(%i1) batch(diffeq.max) read and interpret file: /home/dennis/mastersource/mine/omnisode/diffeq.max (%i2) load(stringproc) (%o2) /usr/local/share/maxima/5.26.0/share/contrib/stringproc/stringproc.mac (%i3) display_alot(iter) := block([abserr, analytic_val_y, ind_var, numeric_val, relerr, term_no, good_digits], if iter >= 0 then (ind_var : array_x , 1 omniout_float(ALWAYS, "x[1] ", 33, ind_var, 20, " "), analytic_val_y : exact_soln_y(ind_var), omniout_float(ALWAYS, "y[1] (analytic) ", 33, analytic_val_y, 20, " "), term_no : 1, numeric_val : array_y , term_no abserr : omniabs(numeric_val - analytic_val_y), omniout_float(ALWAYS, "y[1] (numeric) ", 33, numeric_val, 20, " "), if omniabs(analytic_val_y) # 0.0 abserr 100.0 then (relerr : -----------------------, omniabs(analytic_val_y) relerr if relerr # 0.0 then good_digits : - trunc(log10(------)) 100.0 else good_digits : - 1) else (relerr : - 1.0, good_digits : - 1), if glob_iter = 1 then array_1st_rel_error : relerr 1 else array_last_rel_error : relerr, omniout_float(ALWAYS, 1 "absolute error ", 4, abserr, 20, " "), omniout_float(ALWAYS, "relative error ", 4, relerr, 20, "%"), omniout_float(ALWAYS, "h ", 4, glob_h, 20, " "))) (%o3) display_alot(iter) := block([abserr, analytic_val_y, ind_var, numeric_val, relerr, term_no, good_digits], if iter >= 0 then (ind_var : array_x , 1 omniout_float(ALWAYS, "x[1] ", 33, ind_var, 20, " "), analytic_val_y : exact_soln_y(ind_var), omniout_float(ALWAYS, "y[1] (analytic) ", 33, analytic_val_y, 20, " "), term_no : 1, numeric_val : array_y , term_no abserr : omniabs(numeric_val - analytic_val_y), omniout_float(ALWAYS, "y[1] (numeric) ", 33, numeric_val, 20, " "), if omniabs(analytic_val_y) # 0.0 abserr 100.0 then (relerr : -----------------------, omniabs(analytic_val_y) relerr if relerr # 0.0 then good_digits : - trunc(log10(------)) 100.0 else good_digits : - 1) else (relerr : - 1.0, good_digits : - 1), if glob_iter = 1 then array_1st_rel_error : relerr 1 else array_last_rel_error : relerr, omniout_float(ALWAYS, 1 "absolute error ", 4, abserr, 20, " "), omniout_float(ALWAYS, "relative error ", 4, relerr, 20, "%"), omniout_float(ALWAYS, "h ", 4, glob_h, 20, " "))) (%i4) adjust_for_pole(h_param) := block([hnew, sz2, tmp], block(hnew : h_param, glob_normmax : glob_small_float, if omniabs(array_y_higher ) > glob_small_float 1, 1 then (tmp : omniabs(array_y_higher ), 1, 1 if tmp < glob_normmax then glob_normmax : tmp), if glob_look_poles and (omniabs(array_pole ) > glob_small_float) 1 array_pole 1 and (array_pole # glob_large_float) then (sz2 : -----------, 1 10.0 if sz2 < hnew then (omniout_float(INFO, "glob_h adjusted to ", 20, h_param, 12, "due to singularity."), omniout_str(INFO, "Reached Optimal"), return(hnew))), if not glob_reached_optimal_h then (glob_reached_optimal_h : true, glob_curr_iter_when_opt : glob_current_iter, glob_optimal_clock_start_sec : elapsed_time_seconds(), glob_optimal_start : array_x ), hnew : sz2), return(hnew)) 1 (%o4) adjust_for_pole(h_param) := block([hnew, sz2, tmp], block(hnew : h_param, glob_normmax : glob_small_float, if omniabs(array_y_higher ) > glob_small_float 1, 1 then (tmp : omniabs(array_y_higher ), 1, 1 if tmp < glob_normmax then glob_normmax : tmp), if glob_look_poles and (omniabs(array_pole ) > glob_small_float) 1 array_pole 1 and (array_pole # glob_large_float) then (sz2 : -----------, 1 10.0 if sz2 < hnew then (omniout_float(INFO, "glob_h adjusted to ", 20, h_param, 12, "due to singularity."), omniout_str(INFO, "Reached Optimal"), return(hnew))), if not glob_reached_optimal_h then (glob_reached_optimal_h : true, glob_curr_iter_when_opt : glob_current_iter, glob_optimal_clock_start_sec : elapsed_time_seconds(), glob_optimal_start : array_x ), hnew : sz2), return(hnew)) 1 (%i5) prog_report(x_start, x_end) := block([clock_sec, opt_clock_sec, clock_sec1, expect_sec, left_sec, percent_done, total_clock_sec], clock_sec1 : elapsed_time_seconds(), total_clock_sec : convfloat(clock_sec1) - convfloat(glob_orig_start_sec), glob_clock_sec : convfloat(clock_sec1) - convfloat(glob_clock_start_sec), left_sec : - convfloat(clock_sec1) + convfloat(glob_orig_start_sec) + convfloat(glob_max_sec), expect_sec : comp_expect_sec(convfloat(x_end), convfloat(x_start), convfloat(glob_h) + convfloat(array_x ), 1 convfloat(clock_sec1) - convfloat(glob_orig_start_sec)), opt_clock_sec : convfloat(clock_sec1) - convfloat(glob_optimal_clock_start_sec), glob_optimal_expect_sec : comp_expect_sec(convfloat(x_end), convfloat(x_start), convfloat(glob_h) + convfloat(array_x ), 1 convfloat(opt_clock_sec)), percent_done : comp_percent(convfloat(x_end), convfloat(x_start), convfloat(glob_h) + convfloat(array_x )), glob_percent_done : percent_done, 1 omniout_str_noeol(INFO, "Total Elapsed Time "), omniout_timestr(convfloat(total_clock_sec)), omniout_str_noeol(INFO, "Elapsed Time(since restart) "), omniout_timestr(convfloat(glob_clock_sec)), if convfloat(percent_done) < convfloat(100.0) then (omniout_str_noeol(INFO, "Expected Time Remaining "), omniout_timestr(convfloat(expect_sec)), omniout_str_noeol(INFO, "Optimized Time Remaining "), omniout_timestr(convfloat(glob_optimal_expect_sec))), omniout_str_noeol(INFO, "Time to Timeout "), omniout_timestr(convfloat(left_sec)), omniout_float(INFO, "Percent Done ", 33, percent_done, 4, "%")) (%o5) prog_report(x_start, x_end) := block([clock_sec, opt_clock_sec, clock_sec1, expect_sec, left_sec, percent_done, total_clock_sec], clock_sec1 : elapsed_time_seconds(), total_clock_sec : convfloat(clock_sec1) - convfloat(glob_orig_start_sec), glob_clock_sec : convfloat(clock_sec1) - convfloat(glob_clock_start_sec), left_sec : - convfloat(clock_sec1) + convfloat(glob_orig_start_sec) + convfloat(glob_max_sec), expect_sec : comp_expect_sec(convfloat(x_end), convfloat(x_start), convfloat(glob_h) + convfloat(array_x ), 1 convfloat(clock_sec1) - convfloat(glob_orig_start_sec)), opt_clock_sec : convfloat(clock_sec1) - convfloat(glob_optimal_clock_start_sec), glob_optimal_expect_sec : comp_expect_sec(convfloat(x_end), convfloat(x_start), convfloat(glob_h) + convfloat(array_x ), 1 convfloat(opt_clock_sec)), percent_done : comp_percent(convfloat(x_end), convfloat(x_start), convfloat(glob_h) + convfloat(array_x )), glob_percent_done : percent_done, 1 omniout_str_noeol(INFO, "Total Elapsed Time "), omniout_timestr(convfloat(total_clock_sec)), omniout_str_noeol(INFO, "Elapsed Time(since restart) "), omniout_timestr(convfloat(glob_clock_sec)), if convfloat(percent_done) < convfloat(100.0) then (omniout_str_noeol(INFO, "Expected Time Remaining "), omniout_timestr(convfloat(expect_sec)), omniout_str_noeol(INFO, "Optimized Time Remaining "), omniout_timestr(convfloat(glob_optimal_expect_sec))), omniout_str_noeol(INFO, "Time to Timeout "), omniout_timestr(convfloat(left_sec)), omniout_float(INFO, "Percent Done ", 33, percent_done, 4, "%")) (%i6) check_for_pole() := block([cnt, dr1, dr2, ds1, ds2, hdrc, m, n, nr1, nr2, ord_no, rad_c, rcs, rm0, rm1, rm2, rm3, rm4, found], n : glob_max_terms, m : - 1 - 1 + n, while (m >= 10) and ((omniabs(array_y_higher ) < glob_small_float) 1, m or (omniabs(array_y_higher ) < glob_small_float) 1, m - 1 or (omniabs(array_y_higher ) < glob_small_float)) do m : 1, m - 2 array_y_higher 1, m m - 1, if m > 10 then (rm0 : ----------------------, array_y_higher 1, m - 1 array_y_higher 1, m - 1 rm1 : ----------------------, hdrc : convfloat(m - 1) rm0 array_y_higher 1, m - 2 - convfloat(m - 2) rm1, if omniabs(hdrc) > glob_small_float glob_h convfloat(m - 1) rm0 then (rcs : ------, ord_no : 2.0 - convfloat(m) + --------------------, hdrc hdrc array_real_pole : rcs, array_real_pole : ord_no) 1, 1 1, 2 else (array_real_pole : glob_large_float, 1, 1 array_real_pole : glob_large_float)) 1, 2 else (array_real_pole : glob_large_float, 1, 1 array_real_pole : glob_large_float), n : - 1 - 1 + glob_max_terms, 1, 2 cnt : 0, while (cnt < 5) and (n >= 10) do (if omniabs(array_y_higher ) > 1, n glob_small_float then cnt : 1 + cnt else cnt : 0, n : n - 1), m : cnt + n, if m <= 10 then (array_complex_pole : glob_large_float, 1, 1 array_complex_pole : glob_large_float) 1, 2 elseif (omniabs(array_y_higher ) >= glob_large_float) 1, m or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 1 or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 2 or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 3 or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 4 or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 5 then (array_complex_pole : glob_large_float, 1, 1 array_complex_pole : glob_large_float) 1, 2 array_y_higher array_y_higher 1, m 1, m - 1 else (rm0 : ----------------------, rm1 : ----------------------, array_y_higher array_y_higher 1, m - 1 1, m - 2 array_y_higher array_y_higher 1, m - 2 1, m - 3 rm2 : ----------------------, rm3 : ----------------------, array_y_higher array_y_higher 1, m - 3 1, m - 4 array_y_higher 1, m - 4 rm4 : ----------------------, nr1 : convfloat(m - 3) rm2 array_y_higher 1, m - 5 - 2.0 convfloat(m - 2) rm1 + convfloat(m - 1) rm0, nr2 : convfloat(m - 4) rm3 - 2.0 convfloat(m - 3) rm2 + convfloat(m - 2) rm1, - 1.0 2.0 - 1.0 - 1.0 2.0 - 1.0 5.0 8.0 3.0 dr1 : ----- + --- + -----, dr2 : ----- + --- + -----, ds1 : --- - --- + ---, rm3 rm2 rm1 rm4 rm3 rm2 rm3 rm2 rm1 5.0 8.0 3.0 ds2 : --- - --- + ---, if (omniabs(nr1 dr2 - nr2 dr1) <= glob_small_float) rm4 rm3 rm2 or (omniabs(dr1) <= glob_small_float) then (array_complex_pole : 1, 1 glob_large_float, array_complex_pole : glob_large_float) 1, 2 else (if omniabs(nr1 dr2 - nr2 dr1) > glob_small_float dr1 dr2 - ds2 dr1 + ds1 dr2 then (rcs : ---------------------------, nr1 dr2 - nr2 dr1 rcs nr1 - ds1 convfloat(m) ord_no : ------------- - ------------, 2.0 dr1 2.0 if omniabs(rcs) > glob_small_float then (if rcs > 0.0 then rad_c : sqrt(rcs) glob_h else rad_c : glob_large_float) else (rad_c : glob_large_float, ord_no : glob_large_float)) else (rad_c : glob_large_float, ord_no : glob_large_float)), array_complex_pole : rad_c, array_complex_pole : ord_no), 1, 1 1, 2 found : false, if (not found) and ((array_real_pole = glob_large_float) 1, 1 or (array_real_pole = glob_large_float)) 1, 2 and ((array_complex_pole # glob_large_float) and (array_complex_pole # glob_large_float)) 1, 1 1, 2 and ((array_complex_pole > 0.0) and (array_complex_pole > 0.0)) 1, 1 1, 2 then (array_poles : array_complex_pole , 1, 1 1, 1 array_poles : array_complex_pole , found : true, array_type_pole : 2, 1, 2 1, 2 1 if glob_display_flag then omniout_str(ALWAYS, "Complex estimate of poles used")), if (not found) and ((array_real_pole # glob_large_float) and (array_real_pole # glob_large_float) 1, 1 1, 2 and (array_real_pole > 0.0) and (array_real_pole > 0.0) 1, 1 1, 2 and ((array_complex_pole = glob_large_float) or (array_complex_pole = glob_large_float) or (array_complex_pole <= 0.0) or (array_complex_pole <= 0.0))) 1, 1 1, 2 1, 1 1, 2 then (array_poles : array_real_pole , 1, 1 1, 1 array_poles : array_real_pole , found : true, array_type_pole : 1, 1, 2 1, 2 1 if glob_display_flag then omniout_str(ALWAYS, "Real estimate of pole used")), if (not found) and (((array_real_pole = glob_large_float) 1, 1 or (array_real_pole = glob_large_float)) 1, 2 and ((array_complex_pole = glob_large_float) or (array_complex_pole = glob_large_float))) 1, 1 1, 2 then (array_poles : glob_large_float, array_poles : glob_large_float, 1, 1 1, 2 found : true, array_type_pole : 3, if glob_display_flag 1 then omniout_str(ALWAYS, "NO POLE")), if (not found) and ((array_real_pole < array_complex_pole ) 1, 1 1, 1 and (array_real_pole > 0.0) and (array_real_pole > 1, 1 1, 2 0.0)) then (array_poles : array_real_pole , 1, 1 1, 1 array_poles : array_real_pole , found : true, array_type_pole : 1, 1, 2 1, 2 1 if glob_display_flag then omniout_str(ALWAYS, "Real estimate of pole used")), if (not found) and ((array_complex_pole # glob_large_float) 1, 1 and (array_complex_pole # glob_large_float) 1, 2 and (array_complex_pole > 0.0) and (array_complex_pole > 1, 1 1, 2 0.0)) then (array_poles : array_complex_pole , 1, 1 1, 1 array_poles : array_complex_pole , array_type_pole : 2, found : true, 1, 2 1, 2 1 if glob_display_flag then omniout_str(ALWAYS, "Complex estimate of poles used")), if not found then (array_poles : glob_large_float, array_poles : glob_large_float, 1, 1 1, 2 array_type_pole : 3, if glob_display_flag 1 then omniout_str(ALWAYS, "NO POLE")), array_pole : glob_large_float, 1 array_pole : glob_large_float, if array_pole > array_poles 2 1 1, 1 then (array_pole : array_poles , array_pole : array_poles ), 1 1, 1 2 1, 2 display_pole()) (%o6) check_for_pole() := block([cnt, dr1, dr2, ds1, ds2, hdrc, m, n, nr1, nr2, ord_no, rad_c, rcs, rm0, rm1, rm2, rm3, rm4, found], n : glob_max_terms, m : - 1 - 1 + n, while (m >= 10) and ((omniabs(array_y_higher ) < glob_small_float) 1, m or (omniabs(array_y_higher ) < glob_small_float) 1, m - 1 or (omniabs(array_y_higher ) < glob_small_float)) do m : 1, m - 2 array_y_higher 1, m m - 1, if m > 10 then (rm0 : ----------------------, array_y_higher 1, m - 1 array_y_higher 1, m - 1 rm1 : ----------------------, hdrc : convfloat(m - 1) rm0 array_y_higher 1, m - 2 - convfloat(m - 2) rm1, if omniabs(hdrc) > glob_small_float glob_h convfloat(m - 1) rm0 then (rcs : ------, ord_no : 2.0 - convfloat(m) + --------------------, hdrc hdrc array_real_pole : rcs, array_real_pole : ord_no) 1, 1 1, 2 else (array_real_pole : glob_large_float, 1, 1 array_real_pole : glob_large_float)) 1, 2 else (array_real_pole : glob_large_float, 1, 1 array_real_pole : glob_large_float), n : - 1 - 1 + glob_max_terms, 1, 2 cnt : 0, while (cnt < 5) and (n >= 10) do (if omniabs(array_y_higher ) > 1, n glob_small_float then cnt : 1 + cnt else cnt : 0, n : n - 1), m : cnt + n, if m <= 10 then (array_complex_pole : glob_large_float, 1, 1 array_complex_pole : glob_large_float) 1, 2 elseif (omniabs(array_y_higher ) >= glob_large_float) 1, m or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 1 or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 2 or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 3 or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 4 or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 5 then (array_complex_pole : glob_large_float, 1, 1 array_complex_pole : glob_large_float) 1, 2 array_y_higher array_y_higher 1, m 1, m - 1 else (rm0 : ----------------------, rm1 : ----------------------, array_y_higher array_y_higher 1, m - 1 1, m - 2 array_y_higher array_y_higher 1, m - 2 1, m - 3 rm2 : ----------------------, rm3 : ----------------------, array_y_higher array_y_higher 1, m - 3 1, m - 4 array_y_higher 1, m - 4 rm4 : ----------------------, nr1 : convfloat(m - 3) rm2 array_y_higher 1, m - 5 - 2.0 convfloat(m - 2) rm1 + convfloat(m - 1) rm0, nr2 : convfloat(m - 4) rm3 - 2.0 convfloat(m - 3) rm2 + convfloat(m - 2) rm1, - 1.0 2.0 - 1.0 - 1.0 2.0 - 1.0 5.0 8.0 3.0 dr1 : ----- + --- + -----, dr2 : ----- + --- + -----, ds1 : --- - --- + ---, rm3 rm2 rm1 rm4 rm3 rm2 rm3 rm2 rm1 5.0 8.0 3.0 ds2 : --- - --- + ---, if (omniabs(nr1 dr2 - nr2 dr1) <= glob_small_float) rm4 rm3 rm2 or (omniabs(dr1) <= glob_small_float) then (array_complex_pole : 1, 1 glob_large_float, array_complex_pole : glob_large_float) 1, 2 else (if omniabs(nr1 dr2 - nr2 dr1) > glob_small_float dr1 dr2 - ds2 dr1 + ds1 dr2 then (rcs : ---------------------------, nr1 dr2 - nr2 dr1 rcs nr1 - ds1 convfloat(m) ord_no : ------------- - ------------, 2.0 dr1 2.0 if omniabs(rcs) > glob_small_float then (if rcs > 0.0 then rad_c : sqrt(rcs) glob_h else rad_c : glob_large_float) else (rad_c : glob_large_float, ord_no : glob_large_float)) else (rad_c : glob_large_float, ord_no : glob_large_float)), array_complex_pole : rad_c, array_complex_pole : ord_no), 1, 1 1, 2 found : false, if (not found) and ((array_real_pole = glob_large_float) 1, 1 or (array_real_pole = glob_large_float)) 1, 2 and ((array_complex_pole # glob_large_float) and (array_complex_pole # glob_large_float)) 1, 1 1, 2 and ((array_complex_pole > 0.0) and (array_complex_pole > 0.0)) 1, 1 1, 2 then (array_poles : array_complex_pole , 1, 1 1, 1 array_poles : array_complex_pole , found : true, array_type_pole : 2, 1, 2 1, 2 1 if glob_display_flag then omniout_str(ALWAYS, "Complex estimate of poles used")), if (not found) and ((array_real_pole # glob_large_float) and (array_real_pole # glob_large_float) 1, 1 1, 2 and (array_real_pole > 0.0) and (array_real_pole > 0.0) 1, 1 1, 2 and ((array_complex_pole = glob_large_float) or (array_complex_pole = glob_large_float) or (array_complex_pole <= 0.0) or (array_complex_pole <= 0.0))) 1, 1 1, 2 1, 1 1, 2 then (array_poles : array_real_pole , 1, 1 1, 1 array_poles : array_real_pole , found : true, array_type_pole : 1, 1, 2 1, 2 1 if glob_display_flag then omniout_str(ALWAYS, "Real estimate of pole used")), if (not found) and (((array_real_pole = glob_large_float) 1, 1 or (array_real_pole = glob_large_float)) 1, 2 and ((array_complex_pole = glob_large_float) or (array_complex_pole = glob_large_float))) 1, 1 1, 2 then (array_poles : glob_large_float, array_poles : glob_large_float, 1, 1 1, 2 found : true, array_type_pole : 3, if glob_display_flag 1 then omniout_str(ALWAYS, "NO POLE")), if (not found) and ((array_real_pole < array_complex_pole ) 1, 1 1, 1 and (array_real_pole > 0.0) and (array_real_pole > 1, 1 1, 2 0.0)) then (array_poles : array_real_pole , 1, 1 1, 1 array_poles : array_real_pole , found : true, array_type_pole : 1, 1, 2 1, 2 1 if glob_display_flag then omniout_str(ALWAYS, "Real estimate of pole used")), if (not found) and ((array_complex_pole # glob_large_float) 1, 1 and (array_complex_pole # glob_large_float) 1, 2 and (array_complex_pole > 0.0) and (array_complex_pole > 1, 1 1, 2 0.0)) then (array_poles : array_complex_pole , 1, 1 1, 1 array_poles : array_complex_pole , array_type_pole : 2, found : true, 1, 2 1, 2 1 if glob_display_flag then omniout_str(ALWAYS, "Complex estimate of poles used")), if not found then (array_poles : glob_large_float, array_poles : glob_large_float, 1, 1 1, 2 array_type_pole : 3, if glob_display_flag 1 then omniout_str(ALWAYS, "NO POLE")), array_pole : glob_large_float, 1 array_pole : glob_large_float, if array_pole > array_poles 2 1 1, 1 then (array_pole : array_poles , array_pole : array_poles ), 1 1, 1 2 1, 2 display_pole()) (%i7) get_norms() := block([iii], if not glob_initial_pass then (iii : 1, while iii <= glob_max_terms do (array_norms : 0.0, iii iii : 1 + iii), iii : 1, while iii <= glob_max_terms do (if omniabs(array_y ) > array_norms iii iii then array_norms : omniabs(array_y ), iii : 1 + iii))) iii iii (%o7) get_norms() := block([iii], if not glob_initial_pass then (iii : 1, while iii <= glob_max_terms do (array_norms : 0.0, iii iii : 1 + iii), iii : 1, while iii <= glob_max_terms do (if omniabs(array_y ) > array_norms iii iii then array_norms : omniabs(array_y ), iii : 1 + iii))) iii iii (%i8) atomall() := block([kkk, order_d, adj2, temporary, term, temp, temp2], array_tmp1 : array_x array_x , array_tmp2 : array_const_1D0 + array_tmp1 , 1 1 1 1 1 1 array_const_1D0 1 array_tmp3 : ----------------, array_tmp4 : array_tmp3 + array_const_0D0 , 1 array_tmp2 1 1 1 1 if not array_y_set_initial then (if 1 <= glob_max_terms 1, 2 then (temporary : array_tmp4 expt(glob_h, 1) factorial_3(0, 1), 1 array_y : temporary, array_y_higher : temporary, 2 1, 2 temporary 2.0 temporary : -------------, array_y_higher : temporary)), kkk : 2, glob_h 2, 1 array_tmp1 : array_x array_x + array_x array_x , 2 2 1 1 2 - ats(2, array_tmp2, array_tmp3, 2) array_tmp2 : array_tmp1 , array_tmp3 : -----------------------------------, 2 2 2 array_tmp2 1 array_tmp4 : array_tmp3 , if not array_y_set_initial 2 2 1, 3 then (if 2 <= glob_max_terms then (temporary : array_tmp4 expt(glob_h, 1) factorial_3(1, 2), array_y : temporary, 2 3 temporary 2.0 array_y_higher : temporary, temporary : -------------, 1, 3 glob_h array_y_higher : temporary)), kkk : 3, array_tmp1 : array_x array_x , 2, 2 3 2 2 - ats(3, array_tmp2, array_tmp3, 2) array_tmp2 : array_tmp1 , array_tmp3 : -----------------------------------, 3 3 3 array_tmp2 1 array_tmp4 : array_tmp3 , if not array_y_set_initial 3 3 1, 4 then (if 3 <= glob_max_terms then (temporary : array_tmp4 expt(glob_h, 1) factorial_3(2, 3), array_y : temporary, 3 4 temporary 2.0 array_y_higher : temporary, temporary : -------------, 1, 4 glob_h array_y_higher : temporary)), kkk : 4, array_tmp2 : array_tmp1 , 2, 3 4 4 - ats(4, array_tmp2, array_tmp3, 2) array_tmp3 : -----------------------------------, array_tmp4 : array_tmp3 , 4 array_tmp2 4 4 1 if not array_y_set_initial then (if 4 <= glob_max_terms 1, 5 then (temporary : array_tmp4 expt(glob_h, 1) factorial_3(3, 4), 4 array_y : temporary, array_y_higher : temporary, 5 1, 5 temporary 2.0 temporary : -------------, array_y_higher : temporary)), kkk : 5, glob_h 2, 4 - ats(5, array_tmp2, array_tmp3, 2) array_tmp2 : array_tmp1 , array_tmp3 : -----------------------------------, 5 5 5 array_tmp2 1 array_tmp4 : array_tmp3 , if not array_y_set_initial 5 5 1, 6 then (if 5 <= glob_max_terms then (temporary : array_tmp4 expt(glob_h, 1) factorial_3(4, 5), array_y : temporary, 5 6 temporary 2.0 array_y_higher : temporary, temporary : -------------, 1, 6 glob_h array_y_higher : temporary)), kkk : 6, 2, 5 while kkk <= glob_max_terms do (array_tmp2 : array_tmp1 , kkk kkk - ats(kkk, array_tmp2, array_tmp3, 2) array_tmp3 : -------------------------------------, kkk array_tmp2 1 array_tmp4 : array_tmp3 , order_d : 1, kkk kkk if 1 + order_d + kkk <= glob_max_terms then (if not array_y_set_initial 1, order_d + kkk array_tmp4 expt(glob_h, order_d) kkk then (temporary : -----------------------------------------, factorial_3(kkk - 1, - 1 + order_d + kkk) array_y : temporary, array_y_higher : temporary, order_d + kkk 1, order_d + kkk term : - 1 + order_d + kkk, adj2 : 2, while (adj2 <= 1 + order_d) temporary convfp(adj2) and (term >= 1) do (temporary : ----------------------, glob_h array_y_higher : temporary, adj2 : 1 + adj2, term : term - 1))), adj2, term kkk : 1 + kkk)) (%o8) atomall() := block([kkk, order_d, adj2, temporary, term, temp, temp2], array_tmp1 : array_x array_x , array_tmp2 : array_const_1D0 + array_tmp1 , 1 1 1 1 1 1 array_const_1D0 1 array_tmp3 : ----------------, array_tmp4 : array_tmp3 + array_const_0D0 , 1 array_tmp2 1 1 1 1 if not array_y_set_initial then (if 1 <= glob_max_terms 1, 2 then (temporary : array_tmp4 expt(glob_h, 1) factorial_3(0, 1), 1 array_y : temporary, array_y_higher : temporary, 2 1, 2 temporary 2.0 temporary : -------------, array_y_higher : temporary)), kkk : 2, glob_h 2, 1 array_tmp1 : array_x array_x + array_x array_x , 2 2 1 1 2 - ats(2, array_tmp2, array_tmp3, 2) array_tmp2 : array_tmp1 , array_tmp3 : -----------------------------------, 2 2 2 array_tmp2 1 array_tmp4 : array_tmp3 , if not array_y_set_initial 2 2 1, 3 then (if 2 <= glob_max_terms then (temporary : array_tmp4 expt(glob_h, 1) factorial_3(1, 2), array_y : temporary, 2 3 temporary 2.0 array_y_higher : temporary, temporary : -------------, 1, 3 glob_h array_y_higher : temporary)), kkk : 3, array_tmp1 : array_x array_x , 2, 2 3 2 2 - ats(3, array_tmp2, array_tmp3, 2) array_tmp2 : array_tmp1 , array_tmp3 : -----------------------------------, 3 3 3 array_tmp2 1 array_tmp4 : array_tmp3 , if not array_y_set_initial 3 3 1, 4 then (if 3 <= glob_max_terms then (temporary : array_tmp4 expt(glob_h, 1) factorial_3(2, 3), array_y : temporary, 3 4 temporary 2.0 array_y_higher : temporary, temporary : -------------, 1, 4 glob_h array_y_higher : temporary)), kkk : 4, array_tmp2 : array_tmp1 , 2, 3 4 4 - ats(4, array_tmp2, array_tmp3, 2) array_tmp3 : -----------------------------------, array_tmp4 : array_tmp3 , 4 array_tmp2 4 4 1 if not array_y_set_initial then (if 4 <= glob_max_terms 1, 5 then (temporary : array_tmp4 expt(glob_h, 1) factorial_3(3, 4), 4 array_y : temporary, array_y_higher : temporary, 5 1, 5 temporary 2.0 temporary : -------------, array_y_higher : temporary)), kkk : 5, glob_h 2, 4 - ats(5, array_tmp2, array_tmp3, 2) array_tmp2 : array_tmp1 , array_tmp3 : -----------------------------------, 5 5 5 array_tmp2 1 array_tmp4 : array_tmp3 , if not array_y_set_initial 5 5 1, 6 then (if 5 <= glob_max_terms then (temporary : array_tmp4 expt(glob_h, 1) factorial_3(4, 5), array_y : temporary, 5 6 temporary 2.0 array_y_higher : temporary, temporary : -------------, 1, 6 glob_h array_y_higher : temporary)), kkk : 6, 2, 5 while kkk <= glob_max_terms do (array_tmp2 : array_tmp1 , kkk kkk - ats(kkk, array_tmp2, array_tmp3, 2) array_tmp3 : -------------------------------------, kkk array_tmp2 1 array_tmp4 : array_tmp3 , order_d : 1, kkk kkk if 1 + order_d + kkk <= glob_max_terms then (if not array_y_set_initial 1, order_d + kkk array_tmp4 expt(glob_h, order_d) kkk then (temporary : -----------------------------------------, factorial_3(kkk - 1, - 1 + order_d + kkk) array_y : temporary, array_y_higher : temporary, order_d + kkk 1, order_d + kkk term : - 1 + order_d + kkk, adj2 : 2, while (adj2 <= 1 + order_d) temporary convfp(adj2) and (term >= 1) do (temporary : ----------------------, glob_h array_y_higher : temporary, adj2 : 1 + adj2, term : term - 1))), adj2, term kkk : 1 + kkk)) log(x) (%i9) log10(x) := --------- log(10.0) log(x) (%o9) log10(x) := --------- log(10.0) (%i10) omniout_str(iolevel, str) := if glob_iolevel >= iolevel then printf(true, "~a~%", string(str)) (%o10) omniout_str(iolevel, str) := if glob_iolevel >= iolevel then printf(true, "~a~%", string(str)) (%i11) omniout_str_noeol(iolevel, str) := if glob_iolevel >= iolevel then printf(true, "~a", string(str)) (%o11) omniout_str_noeol(iolevel, str) := if glob_iolevel >= iolevel then printf(true, "~a", string(str)) (%i12) omniout_labstr(iolevel, label, str) := if glob_iolevel >= iolevel then printf(true, "~a = ~a~%", string(label), string(str)) (%o12) omniout_labstr(iolevel, label, str) := if glob_iolevel >= iolevel then printf(true, "~a = ~a~%", string(label), string(str)) (%i13) omniout_float(iolevel, prelabel, prelen, value, vallen, postlabel) := if glob_iolevel >= iolevel then (if vallen = 4 then printf(true, "~a = ~g ~s ~%", prelabel, value, postlabel) else printf(true, "~a = ~g ~s ~%", prelabel, value, postlabel)) (%o13) omniout_float(iolevel, prelabel, prelen, value, vallen, postlabel) := if glob_iolevel >= iolevel then (if vallen = 4 then printf(true, "~a = ~g ~s ~%", prelabel, value, postlabel) else printf(true, "~a = ~g ~s ~%", prelabel, value, postlabel)) (%i14) omniout_int(iolevel, prelabel, prelen, value, vallen, postlabel) := if glob_iolevel >= iolevel then (printf(true, "~a = ~d ~a~%", prelabel, value, postlabel), newline()) (%o14) omniout_int(iolevel, prelabel, prelen, value, vallen, postlabel) := if glob_iolevel >= iolevel then (printf(true, "~a = ~d ~a~%", prelabel, value, postlabel), newline()) (%i15) omniout_float_arr(iolevel, prelabel, elemnt, prelen, value, vallen, postlabel) := if glob_iolevel >= iolevel then (sprint(prelabel, "[", elemnt, "]=", value, postlabel), newline()) (%o15) omniout_float_arr(iolevel, prelabel, elemnt, prelen, value, vallen, postlabel) := if glob_iolevel >= iolevel then (sprint(prelabel, "[", elemnt, "]=", value, postlabel), newline()) (%i16) dump_series(iolevel, dump_label, series_name, array_series, numb) := block([i], if glob_iolevel >= iolevel then (i : 1, while i <= numb do (sprint(dump_label, series_name, "i = ", i, "series = ", array_series ), newline(), i : 1 + i))) i (%o16) dump_series(iolevel, dump_label, series_name, array_series, numb) := block([i], if glob_iolevel >= iolevel then (i : 1, while i <= numb do (sprint(dump_label, series_name, "i = ", i, "series = ", array_series ), newline(), i : 1 + i))) i (%i17) dump_series_2(iolevel, dump_label, series_name, array_series2, numb, subnum) := block([i, sub, ts_term], if glob_iolevel >= iolevel then (sub : 1, while sub <= subnum do (i : 1, while i <= num do (sprint(dump_label, series_name, "sub = ", sub, "i = ", i, "series2 = ", array_series2 ), i : 1 + i), sub : 1 + sub))) sub, i (%o17) dump_series_2(iolevel, dump_label, series_name, array_series2, numb, subnum) := block([i, sub, ts_term], if glob_iolevel >= iolevel then (sub : 1, while sub <= subnum do (i : 1, while i <= num do (sprint(dump_label, series_name, "sub = ", sub, "i = ", i, "series2 = ", array_series2 ), i : 1 + i), sub : 1 + sub))) sub, i (%i18) cs_info(iolevel, str) := if glob_iolevel >= iolevel then sprint(concat("cs_info ", str, " glob_correct_start_flag = ", glob_correct_start_flag, "glob_h := ", glob_h, "glob_reached_optimal_h := ", glob_reached_optimal_h)) (%o18) cs_info(iolevel, str) := if glob_iolevel >= iolevel then sprint(concat("cs_info ", str, " glob_correct_start_flag = ", glob_correct_start_flag, "glob_h := ", glob_h, "glob_reached_optimal_h := ", glob_reached_optimal_h)) (%i19) logitem_time(fd, secs_in) := block([cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int], secs : secs_in, printf(fd, ""), if secs >= 0.0 then (sec_in_millinium : sec_in_minute min_in_hour hours_in_day days_in_year years_in_century secs centuries_in_millinium, milliniums : ----------------, sec_in_millinium millinium_int : floor(milliniums), centuries : (milliniums - millinium_int) centuries_in_millinium, cent_int : floor(centuries), years : (centuries - cent_int) years_in_century, years_int : floor(years), days : (years - years_int) days_in_year, days_int : floor(days), hours : (days - days_int) hours_in_day, hours_int : floor(hours), minutes : (hours - hours_int) min_in_hour, minutes_int : floor(minutes), seconds : (minutes - minutes_int) sec_in_minute, sec_int : floor(seconds), if millinium_int > 0 then printf(fd, "~d Millinia ~d\ Centuries ~d Years ~d Days ~d Hours ~d Minutes ~d Seconds", millinium_int, cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elseif cent_int > 0 then printf(fd, "~d Centuries ~d Years ~d Days ~d Hours ~d Minutes ~d Seconds", cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elseif years_int > 0 then printf(fd, "~d Years ~d Days ~d Hours ~d Minutes ~d Seconds", years_int, days_int, hours_int, minutes_int, sec_int) elseif days_int > 0 then printf(fd, "~d Days ~d Hours ~d Minutes ~d Seconds", days_int, hours_int, minutes_int, sec_int) elseif hours_int > 0 then printf(fd, "~d Hours ~d Minutes ~d Seconds", hours_int, minutes_int, sec_int) elseif minutes_int > 0 then printf(fd, "~d Minutes ~d Seconds", minutes_int, sec_int) else printf(fd, "~d Seconds", sec_int)) else printf(fd, "Unknown"), printf(fd, "")) (%o19) logitem_time(fd, secs_in) := block([cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int], secs : secs_in, printf(fd, ""), if secs >= 0.0 then (sec_in_millinium : sec_in_minute min_in_hour hours_in_day days_in_year years_in_century secs centuries_in_millinium, milliniums : ----------------, sec_in_millinium millinium_int : floor(milliniums), centuries : (milliniums - millinium_int) centuries_in_millinium, cent_int : floor(centuries), years : (centuries - cent_int) years_in_century, years_int : floor(years), days : (years - years_int) days_in_year, days_int : floor(days), hours : (days - days_int) hours_in_day, hours_int : floor(hours), minutes : (hours - hours_int) min_in_hour, minutes_int : floor(minutes), seconds : (minutes - minutes_int) sec_in_minute, sec_int : floor(seconds), if millinium_int > 0 then printf(fd, "~d Millinia ~d\ Centuries ~d Years ~d Days ~d Hours ~d Minutes ~d Seconds", millinium_int, cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elseif cent_int > 0 then printf(fd, "~d Centuries ~d Years ~d Days ~d Hours ~d Minutes ~d Seconds", cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elseif years_int > 0 then printf(fd, "~d Years ~d Days ~d Hours ~d Minutes ~d Seconds", years_int, days_int, hours_int, minutes_int, sec_int) elseif days_int > 0 then printf(fd, "~d Days ~d Hours ~d Minutes ~d Seconds", days_int, hours_int, minutes_int, sec_int) elseif hours_int > 0 then printf(fd, "~d Hours ~d Minutes ~d Seconds", hours_int, minutes_int, sec_int) elseif minutes_int > 0 then printf(fd, "~d Minutes ~d Seconds", minutes_int, sec_int) else printf(fd, "~d Seconds", sec_int)) else printf(fd, "Unknown"), printf(fd, "")) (%i20) omniout_timestr(secs_in) := block([cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int], secs : convfloat(secs_in), if secs >= convfloat(0.0) then (sec_in_millinium : convfloat(sec_in_minute) convfloat(min_in_hour) convfloat(hours_in_day) convfloat(days_in_year) convfloat(years_in_century) secs convfloat(centuries_in_millinium), milliniums : ---------------------------, convfloat(sec_in_millinium) millinium_int : floor(milliniums), centuries : (milliniums - millinium_int) convfloat(centuries_in_millinium), cent_int : floor(centuries), years : (centuries - cent_int) convfloat(years_in_century), years_int : floor(years), days : (years - years_int) convfloat(days_in_year), days_int : floor(days), hours : (days - days_int) convfloat(hours_in_day), hours_int : floor(hours), minutes : (hours - hours_int) convfloat(min_in_hour), minutes_int : floor(minutes), seconds : (minutes - minutes_int) convfloat(sec_in_minute), sec_int : floor(seconds), if millinium_int > 0 then printf(true, "= ~d Millinia ~d Centuries ~d Years ~d Days ~d Hours ~d Minutes ~d Seconds~%", millinium_int, cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elseif cent_int > 0 then printf(true, "= ~d Centuries ~d Years ~d Days ~d Hours ~d Minutes ~d Seconds~%", cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elseif years_int > 0 then printf(true, "= ~d Years ~d Days ~d Hours ~d Minutes ~d Seconds~%", years_int, days_int, hours_int, minutes_int, sec_int) elseif days_int > 0 then printf(true, "= ~d Days ~d Hours ~d Minutes ~d Seconds~%", days_int, hours_int, minutes_int, sec_int) elseif hours_int > 0 then printf(true, "= ~d Hours ~d Minutes ~d Seconds~%", hours_int, minutes_int, sec_int) elseif minutes_int > 0 then printf(true, "= ~d Minutes ~d Seconds~%", minutes_int, sec_int) else printf(true, "= ~d Seconds~%", sec_int)) else printf(true, " Unknown~%")) (%o20) omniout_timestr(secs_in) := block([cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int], secs : convfloat(secs_in), if secs >= convfloat(0.0) then (sec_in_millinium : convfloat(sec_in_minute) convfloat(min_in_hour) convfloat(hours_in_day) convfloat(days_in_year) convfloat(years_in_century) secs convfloat(centuries_in_millinium), milliniums : ---------------------------, convfloat(sec_in_millinium) millinium_int : floor(milliniums), centuries : (milliniums - millinium_int) convfloat(centuries_in_millinium), cent_int : floor(centuries), years : (centuries - cent_int) convfloat(years_in_century), years_int : floor(years), days : (years - years_int) convfloat(days_in_year), days_int : floor(days), hours : (days - days_int) convfloat(hours_in_day), hours_int : floor(hours), minutes : (hours - hours_int) convfloat(min_in_hour), minutes_int : floor(minutes), seconds : (minutes - minutes_int) convfloat(sec_in_minute), sec_int : floor(seconds), if millinium_int > 0 then printf(true, "= ~d Millinia ~d Centuries ~d Years ~d Days ~d Hours ~d Minutes ~d Seconds~%", millinium_int, cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elseif cent_int > 0 then printf(true, "= ~d Centuries ~d Years ~d Days ~d Hours ~d Minutes ~d Seconds~%", cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elseif years_int > 0 then printf(true, "= ~d Years ~d Days ~d Hours ~d Minutes ~d Seconds~%", years_int, days_int, hours_int, minutes_int, sec_int) elseif days_int > 0 then printf(true, "= ~d Days ~d Hours ~d Minutes ~d Seconds~%", days_int, hours_int, minutes_int, sec_int) elseif hours_int > 0 then printf(true, "= ~d Hours ~d Minutes ~d Seconds~%", hours_int, minutes_int, sec_int) elseif minutes_int > 0 then printf(true, "= ~d Minutes ~d Seconds~%", minutes_int, sec_int) else printf(true, "= ~d Seconds~%", sec_int)) else printf(true, " Unknown~%")) (%i21) ats(mmm_ats, array_a, array_b, jjj_ats) := block([iii_ats, lll_ats, ma_ats, ret_ats], ret_ats : 0.0, if jjj_ats <= mmm_ats then (ma_ats : 1 + mmm_ats, iii_ats : jjj_ats, while iii_ats <= mmm_ats do (lll_ats : ma_ats - iii_ats, ret_ats : array_a array_b + ret_ats, iii_ats : 1 + iii_ats)), iii_ats lll_ats ret_ats) (%o21) ats(mmm_ats, array_a, array_b, jjj_ats) := block([iii_ats, lll_ats, ma_ats, ret_ats], ret_ats : 0.0, if jjj_ats <= mmm_ats then (ma_ats : 1 + mmm_ats, iii_ats : jjj_ats, while iii_ats <= mmm_ats do (lll_ats : ma_ats - iii_ats, ret_ats : array_a array_b + ret_ats, iii_ats : 1 + iii_ats)), iii_ats lll_ats ret_ats) (%i22) att(mmm_att, array_aa, array_bb, jjj_att) := block([al_att, iii_att, lll_att, ma_att, ret_att], ret_att : 0.0, if jjj_att <= mmm_att then (ma_att : 2 + mmm_att, iii_att : jjj_att, while iii_att <= mmm_att do (lll_att : ma_att - iii_att, al_att : lll_att - 1, if lll_att <= glob_max_terms then ret_att : array_aa array_bb convfp(al_att) + ret_att, iii_att lll_att ret_att iii_att : 1 + iii_att), ret_att : ---------------), ret_att) convfp(mmm_att) (%o22) att(mmm_att, array_aa, array_bb, jjj_att) := block([al_att, iii_att, lll_att, ma_att, ret_att], ret_att : 0.0, if jjj_att <= mmm_att then (ma_att : 2 + mmm_att, iii_att : jjj_att, while iii_att <= mmm_att do (lll_att : ma_att - iii_att, al_att : lll_att - 1, if lll_att <= glob_max_terms then ret_att : array_aa array_bb convfp(al_att) + ret_att, iii_att lll_att ret_att iii_att : 1 + iii_att), ret_att : ---------------), ret_att) convfp(mmm_att) (%i23) display_pole() := if (array_pole # glob_large_float) 1 and (array_pole > 0.0) and (array_pole # glob_large_float) 1 2 and (array_pole > 0.0) and glob_display_flag 2 then (omniout_float(ALWAYS, "Radius of convergence ", 4, array_pole , 4, " "), omniout_float(ALWAYS, 1 "Order of pole ", 4, array_pole , 4, " ")) 2 (%o23) display_pole() := if (array_pole # glob_large_float) 1 and (array_pole > 0.0) and (array_pole # glob_large_float) 1 2 and (array_pole > 0.0) and glob_display_flag 2 then (omniout_float(ALWAYS, "Radius of convergence ", 4, array_pole , 4, " "), omniout_float(ALWAYS, 1 "Order of pole ", 4, array_pole , 4, " ")) 2 (%i24) logditto(file) := (printf(file, ""), printf(file, "ditto"), printf(file, "")) (%o24) logditto(file) := (printf(file, ""), printf(file, "ditto"), printf(file, "")) (%i25) logitem_integer(file, n) := (printf(file, ""), printf(file, "~d", n), printf(file, "")) (%o25) logitem_integer(file, n) := (printf(file, ""), printf(file, "~d", n), printf(file, "")) (%i26) logitem_str(file, str) := (printf(file, ""), printf(file, str), printf(file, "")) (%o26) logitem_str(file, str) := (printf(file, ""), printf(file, str), printf(file, "")) (%i27) log_revs(file, revs) := printf(file, revs) (%o27) log_revs(file, revs) := printf(file, revs) (%i28) logitem_float(file, x) := (printf(file, ""), printf(file, "~g", x), printf(file, "")) (%o28) logitem_float(file, x) := (printf(file, ""), printf(file, "~g", x), printf(file, "")) (%i29) logitem_pole(file, pole) := (printf(file, ""), if pole = 0 then printf(file, "NA") elseif pole = 1 then printf(file, "Real") elseif pole = 2 then printf(file, "Complex") else printf(file, "No Pole"), printf(file, "")) (%o29) logitem_pole(file, pole) := (printf(file, ""), if pole = 0 then printf(file, "NA") elseif pole = 1 then printf(file, "Real") elseif pole = 2 then printf(file, "Complex") else printf(file, "No Pole"), printf(file, "")) (%i30) logstart(file) := printf(file, "") (%o30) logstart(file) := printf(file, "") (%i31) logend(file) := printf(file, "~%") (%o31) logend(file) := printf(file, "~%") (%i32) chk_data() := block([errflag], errflag : false, if (glob_max_terms < 15) or (glob_max_terms > 512) then (omniout_str(ALWAYS, "Illegal max_terms = -- Using 30"), glob_max_terms : 30), if glob_max_iter < 2 then (omniout_str(ALWAYS, "Illegal max_iter"), errflag : true), if errflag then quit()) (%o32) chk_data() := block([errflag], errflag : false, if (glob_max_terms < 15) or (glob_max_terms > 512) then (omniout_str(ALWAYS, "Illegal max_terms = -- Using 30"), glob_max_terms : 30), if glob_max_iter < 2 then (omniout_str(ALWAYS, "Illegal max_iter"), errflag : true), if errflag then quit()) (%i33) comp_expect_sec(t_end2, t_start2, t2, clock_sec2) := block([ms2, rrr, sec_left, sub1, sub2], ms2 : clock_sec2, sub1 : t_end2 - t_start2, sub2 : t2 - t_start2, if sub1 = 0.0 then sec_left : 0.0 else (if sub2 > 0.0 sub1 then (rrr : ----, sec_left : rrr ms2 - ms2) else sec_left : 0.0), sec_left) sub2 (%o33) comp_expect_sec(t_end2, t_start2, t2, clock_sec2) := block([ms2, rrr, sec_left, sub1, sub2], ms2 : clock_sec2, sub1 : t_end2 - t_start2, sub2 : t2 - t_start2, if sub1 = 0.0 then sec_left : 0.0 else (if sub2 > 0.0 sub1 then (rrr : ----, sec_left : rrr ms2 - ms2) else sec_left : 0.0), sec_left) sub2 (%i34) comp_percent(t_end2, t_start2, t2) := block([rrr, sub1, sub2], sub1 : t_end2 - t_start2, sub2 : t2 - t_start2, 100.0 sub2 if sub2 > glob_small_float then rrr : ---------- else rrr : 0.0, rrr) sub1 (%o34) comp_percent(t_end2, t_start2, t2) := block([rrr, sub1, sub2], sub1 : t_end2 - t_start2, sub2 : t2 - t_start2, 100.0 sub2 if sub2 > glob_small_float then rrr : ---------- else rrr : 0.0, rrr) sub1 (%i35) factorial_2(nnn) := block([ret], ret : nnn!) (%o35) factorial_2(nnn) := block([ret], ret : nnn!) (%i36) factorial_1(nnn) := block([ret], if nnn <= glob_max_terms then (if array_fact_1 = 0 nnn then (ret : factorial_2(nnn), array_fact_1 : ret) nnn else ret : array_fact_1 ) else ret : factorial_2(nnn), ret) nnn (%o36) factorial_1(nnn) := block([ret], if nnn <= glob_max_terms then (if array_fact_1 = 0 nnn then (ret : factorial_2(nnn), array_fact_1 : ret) nnn else ret : array_fact_1 ) else ret : factorial_2(nnn), ret) nnn (%i37) factorial_3(mmm, nnn) := block([ret], if (nnn <= glob_max_terms) and (mmm <= glob_max_terms) factorial_1(mmm) then (if array_fact_2 = 0 then (ret : ----------------, mmm, nnn factorial_1(nnn) array_fact_2 : ret) else ret : array_fact_2 ) mmm, nnn mmm, nnn factorial_2(mmm) else ret : ----------------, ret) factorial_2(nnn) (%o37) factorial_3(mmm, nnn) := block([ret], if (nnn <= glob_max_terms) and (mmm <= glob_max_terms) factorial_1(mmm) then (if array_fact_2 = 0 then (ret : ----------------, mmm, nnn factorial_1(nnn) array_fact_2 : ret) else ret : array_fact_2 ) mmm, nnn mmm, nnn factorial_2(mmm) else ret : ----------------, ret) factorial_2(nnn) (%i38) convfp(mmm) := mmm (%o38) convfp(mmm) := mmm (%i39) convfloat(mmm) := mmm (%o39) convfloat(mmm) := mmm (%i40) elapsed_time_seconds() := block([t], t : elapsed_real_time(), t) (%o40) elapsed_time_seconds() := block([t], t : elapsed_real_time(), t) (%i41) arcsin(x) := asin(x) (%o41) arcsin(x) := asin(x) (%i42) arccos(x) := acos(x) (%o42) arccos(x) := acos(x) (%i43) arctan(x) := atan(x) (%o43) arctan(x) := atan(x) (%i44) omniabs(x) := abs(x) (%o44) omniabs(x) := abs(x) y (%i45) expt(x, y) := x y (%o45) expt(x, y) := x (%i46) exact_soln_y(x) := arctan(x) (%o46) exact_soln_y(x) := arctan(x) (%i47) main() := block([d1, d2, d3, d4, est_err_2, niii, done_once, term, ord, order_diff, term_no, html_log_file, iiif, jjjf, rows, r_order, sub_iter, calc_term, iii, temp_sum, current_iter, x_start, x_end, it, log10norm, max_terms, opt_iter, tmp, subiter], define_variable(ALWAYS, 1, fixnum), define_variable(glob_iolevel, 5, fixnum), define_variable(DEBUGMASSIVE, 4, fixnum), define_variable(INFO, 2, fixnum), define_variable(DEBUGL, 3, fixnum), define_variable(glob_max_terms, 30, fixnum), define_variable(glob_max_minutes, 0.0, float), define_variable(glob_warned, false, boolean), define_variable(glob_log10_abserr, 1.0E-11, float), define_variable(days_in_year, 365, fixnum), define_variable(djd_debug, true, boolean), define_variable(glob_max_sec, 10000.0, float), define_variable(glob_warned2, false, boolean), define_variable(glob_max_rel_trunc_err, 1.0E-11, float), define_variable(glob_look_poles, false, boolean), define_variable(glob_large_float, 9.0E+100, float), define_variable(glob_hmax, 1.0, float), define_variable(glob_log10abserr, 0.0, float), define_variable(glob_iter, 0, fixnum), define_variable(MAX_UNCHANGED, 10, fixnum), define_variable(glob_small_float, 1.0E-51, float), define_variable(glob_optimal_clock_start_sec, 0.0, float), define_variable(centuries_in_millinium, 10, fixnum), define_variable(glob_log10relerr, 0.0, float), define_variable(glob_smallish_float, 1.0E-101, float), define_variable(glob_h, 0.1, float), define_variable(glob_disp_incr, 0.1, float), define_variable(glob_subiter_method, 3, fixnum), define_variable(glob_not_yet_finished, true, boolean), define_variable(glob_clock_start_sec, 0.0, float), define_variable(glob_unchanged_h_cnt, 0, fixnum), define_variable(glob_dump_analytic, false, boolean), define_variable(years_in_century, 100, fixnum), define_variable(glob_html_log, true, boolean), define_variable(glob_not_yet_start_msg, true, boolean), define_variable(glob_initial_pass, true, boolean), define_variable(min_in_hour, 60, fixnum), define_variable(sec_in_minute, 60, fixnum), define_variable(glob_display_flag, true, boolean), define_variable(glob_max_opt_iter, 10, fixnum), define_variable(glob_normmax, 0.0, float), define_variable(glob_current_iter, 0, fixnum), define_variable(glob_curr_iter_when_opt, 0, fixnum), define_variable(glob_max_trunc_err, 1.0E-11, float), define_variable(glob_max_iter, 1000, fixnum), define_variable(glob_max_hours, 0.0, float), define_variable(glob_abserr, 1.0E-11, float), define_variable(glob_hmin_init, 0.001, float), define_variable(glob_hmin, 1.0E-11, float), define_variable(glob_clock_sec, 0.0, float), define_variable(djd_debug2, true, boolean), define_variable(glob_optimal_expect_sec, 0.1, float), define_variable(glob_percent_done, 0.0, float), define_variable(glob_orig_start_sec, 0.0, float), define_variable(glob_optimal_done, false, boolean), define_variable(glob_dump, false, boolean), define_variable(glob_log10normmin, 0.1, float), define_variable(glob_start, 0, fixnum), define_variable(glob_reached_optimal_h, false, boolean), define_variable(glob_almost_1, 0.999, float), define_variable(glob_optimal_start, 0.0, float), define_variable(glob_no_eqs, 0, fixnum), define_variable(glob_relerr, 1.0E-11, float), define_variable(glob_log10_relerr, 1.0E-11, float), define_variable(glob_last_good_h, 0.1, float), define_variable(hours_in_day, 24, fixnum), ALWAYS : 1, INFO : 2, DEBUGL : 3, DEBUGMASSIVE : 4, glob_iolevel : INFO, glob_orig_start_sec : elapsed_time_seconds(), MAX_UNCHANGED : 10, glob_curr_iter_when_opt : 0, glob_display_flag : true, glob_no_eqs : 1, glob_iter : - 1, opt_iter : - 1, glob_max_iter : 50000, glob_max_hours : 0.0, glob_max_minutes : 15.0, omniout_str(ALWAYS, "##############ECHO OF PROBLEM#################"), omniout_str(ALWAYS, "##############temp/sing2postode.ode#################"), omniout_str(ALWAYS, "diff ( y , x , 1 ) = 1.0/ (x * x + 1.0) ;"), omniout_str(ALWAYS, "!"), omniout_str(ALWAYS, "/* BEGIN FIRST INPUT BLOCK */"), omniout_str(ALWAYS, "Digits : 32,"), omniout_str(ALWAYS, "max_terms : 30,"), omniout_str(ALWAYS, "!"), omniout_str(ALWAYS, "/* END FIRST INPUT BLOCK */"), omniout_str(ALWAYS, "/* BEGIN SECOND INPUT BLOCK */"), omniout_str(ALWAYS, "x_start : -2.0,"), omniout_str(ALWAYS, "x_end : 1.0,"), omniout_str(ALWAYS, "glob_h : 0.00001,"), omniout_str(ALWAYS, "array_y_init[0 + 1] : exact_soln_y(x_start),"), omniout_str(ALWAYS, "glob_look_poles : true,"), omniout_str(ALWAYS, "glob_max_iter : 100,"), omniout_str(ALWAYS, "/* END SECOND INPUT BLOCK */"), omniout_str(ALWAYS, "/* BEGIN OVERRIDE BLOCK */"), omniout_str(ALWAYS, "glob_h : 0.00001 ,"), omniout_str(ALWAYS, "glob_look_poles : true,"), omniout_str(ALWAYS, "glob_max_iter : 100,"), omniout_str(ALWAYS, "glob_max_minutes : 1,"), omniout_str(ALWAYS, "/* END OVERRIDE BLOCK */"), omniout_str(ALWAYS, "!"), omniout_str(ALWAYS, "/* BEGIN USER DEF BLOCK */"), omniout_str(ALWAYS, "exact_soln_y (x) := ("), omniout_str(ALWAYS, " (arctan(x)) "), omniout_str(ALWAYS, ");"), omniout_str(ALWAYS, ""), omniout_str(ALWAYS, ""), omniout_str(ALWAYS, "/* END USER DEF BLOCK */"), omniout_str(ALWAYS, "#######END OF ECHO OF PROBLEM#################"), glob_unchanged_h_cnt : 0, glob_warned : false, glob_warned2 : false, glob_small_float : 1.0E-200, glob_smallish_float : 1.0E-64, glob_large_float : 1.0E+100, glob_almost_1 : 0.99, glob_log10_abserr : - 8.0, glob_log10_relerr : - 8.0, glob_hmax : 0.01, Digits : 32, max_terms : 30, glob_max_terms : max_terms, glob_html_log : true, array(array_tmp0, 1 + max_terms), array(array_tmp1, 1 + max_terms), array(array_tmp2, 1 + max_terms), array(array_tmp3, 1 + max_terms), array(array_tmp4, 1 + max_terms), array(array_last_rel_error, 1 + max_terms), array(array_fact_1, 1 + max_terms), array(array_type_pole, 1 + max_terms), array(array_1st_rel_error, 1 + max_terms), array(array_pole, 1 + max_terms), array(array_norms, 1 + max_terms), array(array_y_init, 1 + max_terms), array(array_y, 1 + max_terms), array(array_x, 1 + max_terms), array(array_m1, 1 + max_terms), array(array_fact_2, 1 + max_terms, 1 + max_terms), array(array_y_higher_work2, 1 + 2, 1 + max_terms), array(array_real_pole, 1 + 1, 1 + 3), array(array_y_set_initial, 1 + 2, 1 + max_terms), array(array_y_higher_work, 1 + 2, 1 + max_terms), array(array_poles, 1 + 1, 1 + 3), array(array_y_higher, 1 + 2, 1 + max_terms), array(array_complex_pole, 1 + 1, 1 + 3), term : 1, while term <= max_terms do (array_tmp0 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp1 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp2 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp3 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp4 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_last_rel_error : 0.0, term : 1 + term), term term : 1, while term <= max_terms do (array_fact_1 : 0.0, term term : 1 + term), term : 1, while term <= max_terms do (array_type_pole : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_1st_rel_error : 0.0, term : 1 + term), term term : 1, while term <= max_terms do (array_pole : 0.0, term : 1 + term), term term : 1, while term <= max_terms do (array_norms : 0.0, term term : 1 + term), term : 1, while term <= max_terms do (array_y_init : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_y : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_x : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_m1 : 0.0, term : 1 + term), ord : 1, term while ord <= max_terms do (term : 1, while term <= max_terms do (array_fact_2 : 0.0, term : 1 + term), ord : 1 + ord), ord, term ord : 1, while ord <= 2 do (term : 1, while term <= max_terms do (array_y_higher_work2 : 0.0, ord, term term : 1 + term), ord : 1 + ord), ord : 1, while ord <= 1 do (term : 1, while term <= 3 do (array_real_pole : 0.0, term : 1 + term), ord : 1 + ord), ord, term ord : 1, while ord <= 2 do (term : 1, while term <= max_terms do (array_y_set_initial : 0.0, ord, term term : 1 + term), ord : 1 + ord), ord : 1, while ord <= 2 do (term : 1, while term <= max_terms do (array_y_higher_work : 0.0, term : 1 + term), ord, term ord : 1 + ord), ord : 1, while ord <= 1 do (term : 1, while term <= 3 do (array_poles : 0.0, term : 1 + term), ord, term ord : 1 + ord), ord : 1, while ord <= 2 do (term : 1, while term <= max_terms do (array_y_higher : 0.0, term : 1 + term), ord, term ord : 1 + ord), ord : 1, while ord <= 1 do (term : 1, while term <= 3 do (array_complex_pole : 0.0, term : 1 + term), ord, term ord : 1 + ord), array(array_tmp4, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp4 : 0.0, term : 1 + term), term array(array_tmp3, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp3 : 0.0, term : 1 + term), term array(array_tmp2, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp2 : 0.0, term : 1 + term), term array(array_tmp1, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp1 : 0.0, term : 1 + term), term array(array_tmp0, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp0 : 0.0, term : 1 + term), term array(array_x, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_x : 0.0, term : 1 + term), term array(array_y, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_y : 0.0, term : 1 + term), term array(array_const_1D0, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_const_1D0 : 0.0, term : 1 + term), term array_const_1D0 : 1.0, array(array_const_1, 1 + 1 + max_terms), term : 1, 1 while term <= 1 + max_terms do (array_const_1 : 0.0, term : 1 + term), term array_const_1 : 1, array(array_const_0D0, 1 + 1 + max_terms), term : 1, 1 while term <= 1 + max_terms do (array_const_0D0 : 0.0, term : 1 + term), term array_const_0D0 : 0.0, array(array_m1, 1 + 1 + max_terms), term : 1, 1 while term <= max_terms do (array_m1 : 0.0, term : 1 + term), term array_m1 : - 1.0, iiif : 0, while iiif <= glob_max_terms do (jjjf : 0, 1 while jjjf <= glob_max_terms do (array_fact_1 : 0, iiif array_fact_2 : 0, jjjf : 1 + jjjf), iiif : 1 + iiif), iiif, jjjf x_start : - 2.0, x_end : 1.0, glob_h : 1.0E-5, array_y_init : exact_soln_y(x_start), glob_look_poles : true, 1 + 0 glob_max_iter : 100, glob_h : 1.0E-5, glob_look_poles : true, glob_max_iter : 100, glob_max_minutes : 1, glob_last_good_h : glob_h, glob_max_terms : max_terms, glob_max_sec : convfloat(3600.0) convfloat(glob_max_hours) + convfloat(60.0) convfloat(glob_max_minutes), glob_abserr : expt(10.0, glob_log10_abserr), glob_relerr : expt(10.0, glob_log10_relerr), chk_data(), array_y_set_initial : true, array_y_set_initial : false, 1, 1 1, 2 array_y_set_initial : false, array_y_set_initial : false, 1, 3 1, 4 array_y_set_initial : false, array_y_set_initial : false, 1, 5 1, 6 array_y_set_initial : false, array_y_set_initial : false, 1, 7 1, 8 array_y_set_initial : false, array_y_set_initial : false, 1, 9 1, 10 array_y_set_initial : false, array_y_set_initial : false, 1, 11 1, 12 array_y_set_initial : false, array_y_set_initial : false, 1, 13 1, 14 array_y_set_initial : false, array_y_set_initial : false, 1, 15 1, 16 array_y_set_initial : false, array_y_set_initial : false, 1, 17 1, 18 array_y_set_initial : false, array_y_set_initial : false, 1, 19 1, 20 array_y_set_initial : false, array_y_set_initial : false, 1, 21 1, 22 array_y_set_initial : false, array_y_set_initial : false, 1, 23 1, 24 array_y_set_initial : false, array_y_set_initial : false, 1, 25 1, 26 array_y_set_initial : false, array_y_set_initial : false, 1, 27 1, 28 array_y_set_initial : false, array_y_set_initial : false, 1, 29 1, 30 if glob_html_log then html_log_file : openw("html/entry.html"), omniout_str(ALWAYS, "START of Soultion"), array_x : x_start, 1 array_x : glob_h, order_diff : 1, term_no : 1, 2 while term_no <= order_diff do (array_y : term_no array_y_init expt(glob_h, term_no - 1) term_no ---------------------------------------------, term_no : 1 + term_no), factorial_1(term_no - 1) rows : order_diff, r_order : 1, while r_order <= rows do (term_no : 1, while term_no <= 1 - r_order + rows do (it : - 1 + r_order + term_no, array_y_init expt(glob_h, term_no - 1) it array_y_higher : ----------------------------------------, r_order, term_no factorial_1(term_no - 1) term_no : 1 + term_no), r_order : 1 + r_order), current_iter : 1, glob_clock_start_sec : elapsed_time_seconds(), if omniabs(array_y_higher ) > glob_small_float 1, 1 then (tmp : omniabs(array_y_higher ), log10norm : log10(tmp), 1, 1 if log10norm < glob_log10normmin then glob_log10normmin : log10norm), display_alot(current_iter), glob_clock_sec : elapsed_time_seconds(), glob_current_iter : 0, glob_iter : 0, omniout_str(DEBUGL, " "), glob_reached_optimal_h : true, glob_optimal_clock_start_sec : elapsed_time_seconds(), while (glob_current_iter < glob_max_iter) and (array_x <= x_end) and (convfloat(glob_clock_sec) - convfloat(glob_orig_start_sec) < 1 convfloat(glob_max_sec)) do (omniout_str (INFO, " "), omniout_str(INFO, "TOP MAIN SOLVE Loop"), glob_iter : 1 + glob_iter, glob_clock_sec : elapsed_time_seconds(), glob_current_iter : 1 + glob_current_iter, atomall(), if glob_look_poles then check_for_pole(), array_x : glob_h + array_x , 1 1 array_x : glob_h, order_diff : 1, ord : 2, calc_term : 1, 2 iii : glob_max_terms, while iii >= calc_term do (array_y_higher_work : 2, iii array_y_higher 2, iii --------------------------- expt(glob_h, calc_term - 1) -------------------------------------, iii : iii - 1), temp_sum : 0.0, factorial_3(iii - calc_term, iii - 1) ord : 2, calc_term : 1, iii : glob_max_terms, while iii >= calc_term do (temp_sum : array_y_higher_work + temp_sum, ord, iii iii : iii - 1), array_y_higher_work2 : ord, calc_term temp_sum expt(glob_h, calc_term - 1) ------------------------------------, ord : 1, calc_term : 2, factorial_1(calc_term - 1) iii : glob_max_terms, while iii >= calc_term do (array_y_higher_work : 1, iii array_y_higher 1, iii --------------------------- expt(glob_h, calc_term - 1) -------------------------------------, iii : iii - 1), temp_sum : 0.0, factorial_3(iii - calc_term, iii - 1) ord : 1, calc_term : 2, iii : glob_max_terms, while iii >= calc_term do (temp_sum : array_y_higher_work + temp_sum, ord, iii iii : iii - 1), array_y_higher_work2 : ord, calc_term temp_sum expt(glob_h, calc_term - 1) ------------------------------------, ord : 1, calc_term : 1, factorial_1(calc_term - 1) iii : glob_max_terms, while iii >= calc_term do (array_y_higher_work : 1, iii array_y_higher 1, iii --------------------------- expt(glob_h, calc_term - 1) -------------------------------------, iii : iii - 1), temp_sum : 0.0, factorial_3(iii - calc_term, iii - 1) ord : 1, calc_term : 1, iii : glob_max_terms, while iii >= calc_term do (temp_sum : array_y_higher_work + temp_sum, ord, iii iii : iii - 1), array_y_higher_work2 : ord, calc_term temp_sum expt(glob_h, calc_term - 1) ------------------------------------, term_no : glob_max_terms, factorial_1(calc_term - 1) while term_no >= 1 do (array_y : array_y_higher_work2 , term_no 1, term_no ord : 1, while ord <= order_diff do (array_y_higher : ord, term_no array_y_higher_work2 , ord : 1 + ord), term_no : term_no - 1), ord, term_no display_alot(current_iter)), omniout_str(ALWAYS, "Finished!"), if glob_iter >= glob_max_iter then omniout_str(ALWAYS, "Maximum Iterations Reached before Solution Completed!"), if elapsed_time_seconds() - convfloat(glob_orig_start_sec) >= convfloat(glob_max_sec) then omniout_str(ALWAYS, "Maximum Time Reached before Solution Completed!"), glob_clock_sec : elapsed_time_seconds(), omniout_str(INFO, "diff ( y , x , 1 ) = 1.0/ (x * x + 1.0) ;"), omniout_int(INFO, "Iterations ", 32, glob_iter, 4, " "), prog_report(x_start, x_end), if glob_html_log then (logstart(html_log_file), logitem_str(html_log_file, "2012-08-12T23:51:20-05:00"), logitem_str(html_log_file, "Maxima"), logitem_str(html_log_file, "sing2"), logitem_str(html_log_file, "diff ( y , x , 1 ) = 1.0/ (x * x + 1.0) ;"), logitem_float(html_log_file, x_start), logitem_float(html_log_file, x_end), logitem_float(html_log_file, array_x ), logitem_float(html_log_file, glob_h), 1 logitem_str(html_log_file, "16"), logitem_integer(html_log_file, glob_max_terms), logitem_float(html_log_file, array_1st_rel_error ), 1 logitem_float(html_log_file, array_last_rel_error ), 1 logitem_integer(html_log_file, glob_iter), logitem_pole(html_log_file, array_type_pole ), 1 if (array_type_pole = 1) or (array_type_pole = 2) 1 1 then (logitem_float(html_log_file, array_pole ), 1 logitem_float(html_log_file, array_pole ), 0) 2 else (logitem_str(html_log_file, "NA"), logitem_str(html_log_file, "NA"), 0), logitem_time(html_log_file, convfloat(glob_clock_sec)), if glob_percent_done < 100.0 then (logitem_time(html_log_file, convfloat(glob_optimal_expect_sec)), 0) else (logitem_str(html_log_file, "Done"), 0), log_revs(html_log_file, " 119 "), logitem_str(html_log_file, "sing2 diffeq.max"), logitem_str(html_log_file, "sing2 maxima results"), logitem_str(html_log_file, "1st test with c++"), logend(html_log_file)), if glob_html_log then close(html_log_file)) (%o47) main() := block([d1, d2, d3, d4, est_err_2, niii, done_once, term, ord, order_diff, term_no, html_log_file, iiif, jjjf, rows, r_order, sub_iter, calc_term, iii, temp_sum, current_iter, x_start, x_end, it, log10norm, max_terms, opt_iter, tmp, subiter], define_variable(ALWAYS, 1, fixnum), define_variable(glob_iolevel, 5, fixnum), define_variable(DEBUGMASSIVE, 4, fixnum), define_variable(INFO, 2, fixnum), define_variable(DEBUGL, 3, fixnum), define_variable(glob_max_terms, 30, fixnum), define_variable(glob_max_minutes, 0.0, float), define_variable(glob_warned, false, boolean), define_variable(glob_log10_abserr, 1.0E-11, float), define_variable(days_in_year, 365, fixnum), define_variable(djd_debug, true, boolean), define_variable(glob_max_sec, 10000.0, float), define_variable(glob_warned2, false, boolean), define_variable(glob_max_rel_trunc_err, 1.0E-11, float), define_variable(glob_look_poles, false, boolean), define_variable(glob_large_float, 9.0E+100, float), define_variable(glob_hmax, 1.0, float), define_variable(glob_log10abserr, 0.0, float), define_variable(glob_iter, 0, fixnum), define_variable(MAX_UNCHANGED, 10, fixnum), define_variable(glob_small_float, 1.0E-51, float), define_variable(glob_optimal_clock_start_sec, 0.0, float), define_variable(centuries_in_millinium, 10, fixnum), define_variable(glob_log10relerr, 0.0, float), define_variable(glob_smallish_float, 1.0E-101, float), define_variable(glob_h, 0.1, float), define_variable(glob_disp_incr, 0.1, float), define_variable(glob_subiter_method, 3, fixnum), define_variable(glob_not_yet_finished, true, boolean), define_variable(glob_clock_start_sec, 0.0, float), define_variable(glob_unchanged_h_cnt, 0, fixnum), define_variable(glob_dump_analytic, false, boolean), define_variable(years_in_century, 100, fixnum), define_variable(glob_html_log, true, boolean), define_variable(glob_not_yet_start_msg, true, boolean), define_variable(glob_initial_pass, true, boolean), define_variable(min_in_hour, 60, fixnum), define_variable(sec_in_minute, 60, fixnum), define_variable(glob_display_flag, true, boolean), define_variable(glob_max_opt_iter, 10, fixnum), define_variable(glob_normmax, 0.0, float), define_variable(glob_current_iter, 0, fixnum), define_variable(glob_curr_iter_when_opt, 0, fixnum), define_variable(glob_max_trunc_err, 1.0E-11, float), define_variable(glob_max_iter, 1000, fixnum), define_variable(glob_max_hours, 0.0, float), define_variable(glob_abserr, 1.0E-11, float), define_variable(glob_hmin_init, 0.001, float), define_variable(glob_hmin, 1.0E-11, float), define_variable(glob_clock_sec, 0.0, float), define_variable(djd_debug2, true, boolean), define_variable(glob_optimal_expect_sec, 0.1, float), define_variable(glob_percent_done, 0.0, float), define_variable(glob_orig_start_sec, 0.0, float), define_variable(glob_optimal_done, false, boolean), define_variable(glob_dump, false, boolean), define_variable(glob_log10normmin, 0.1, float), define_variable(glob_start, 0, fixnum), define_variable(glob_reached_optimal_h, false, boolean), define_variable(glob_almost_1, 0.999, float), define_variable(glob_optimal_start, 0.0, float), define_variable(glob_no_eqs, 0, fixnum), define_variable(glob_relerr, 1.0E-11, float), define_variable(glob_log10_relerr, 1.0E-11, float), define_variable(glob_last_good_h, 0.1, float), define_variable(hours_in_day, 24, fixnum), ALWAYS : 1, INFO : 2, DEBUGL : 3, DEBUGMASSIVE : 4, glob_iolevel : INFO, glob_orig_start_sec : elapsed_time_seconds(), MAX_UNCHANGED : 10, glob_curr_iter_when_opt : 0, glob_display_flag : true, glob_no_eqs : 1, glob_iter : - 1, opt_iter : - 1, glob_max_iter : 50000, glob_max_hours : 0.0, glob_max_minutes : 15.0, omniout_str(ALWAYS, "##############ECHO OF PROBLEM#################"), omniout_str(ALWAYS, "##############temp/sing2postode.ode#################"), omniout_str(ALWAYS, "diff ( y , x , 1 ) = 1.0/ (x * x + 1.0) ;"), omniout_str(ALWAYS, "!"), omniout_str(ALWAYS, "/* BEGIN FIRST INPUT BLOCK */"), omniout_str(ALWAYS, "Digits : 32,"), omniout_str(ALWAYS, "max_terms : 30,"), omniout_str(ALWAYS, "!"), omniout_str(ALWAYS, "/* END FIRST INPUT BLOCK */"), omniout_str(ALWAYS, "/* BEGIN SECOND INPUT BLOCK */"), omniout_str(ALWAYS, "x_start : -2.0,"), omniout_str(ALWAYS, "x_end : 1.0,"), omniout_str(ALWAYS, "glob_h : 0.00001,"), omniout_str(ALWAYS, "array_y_init[0 + 1] : exact_soln_y(x_start),"), omniout_str(ALWAYS, "glob_look_poles : true,"), omniout_str(ALWAYS, "glob_max_iter : 100,"), omniout_str(ALWAYS, "/* END SECOND INPUT BLOCK */"), omniout_str(ALWAYS, "/* BEGIN OVERRIDE BLOCK */"), omniout_str(ALWAYS, "glob_h : 0.00001 ,"), omniout_str(ALWAYS, "glob_look_poles : true,"), omniout_str(ALWAYS, "glob_max_iter : 100,"), omniout_str(ALWAYS, "glob_max_minutes : 1,"), omniout_str(ALWAYS, "/* END OVERRIDE BLOCK */"), omniout_str(ALWAYS, "!"), omniout_str(ALWAYS, "/* BEGIN USER DEF BLOCK */"), omniout_str(ALWAYS, "exact_soln_y (x) := ("), omniout_str(ALWAYS, " (arctan(x)) "), omniout_str(ALWAYS, ");"), omniout_str(ALWAYS, ""), omniout_str(ALWAYS, ""), omniout_str(ALWAYS, "/* END USER DEF BLOCK */"), omniout_str(ALWAYS, "#######END OF ECHO OF PROBLEM#################"), glob_unchanged_h_cnt : 0, glob_warned : false, glob_warned2 : false, glob_small_float : 1.0E-200, glob_smallish_float : 1.0E-64, glob_large_float : 1.0E+100, glob_almost_1 : 0.99, glob_log10_abserr : - 8.0, glob_log10_relerr : - 8.0, glob_hmax : 0.01, Digits : 32, max_terms : 30, glob_max_terms : max_terms, glob_html_log : true, array(array_tmp0, 1 + max_terms), array(array_tmp1, 1 + max_terms), array(array_tmp2, 1 + max_terms), array(array_tmp3, 1 + max_terms), array(array_tmp4, 1 + max_terms), array(array_last_rel_error, 1 + max_terms), array(array_fact_1, 1 + max_terms), array(array_type_pole, 1 + max_terms), array(array_1st_rel_error, 1 + max_terms), array(array_pole, 1 + max_terms), array(array_norms, 1 + max_terms), array(array_y_init, 1 + max_terms), array(array_y, 1 + max_terms), array(array_x, 1 + max_terms), array(array_m1, 1 + max_terms), array(array_fact_2, 1 + max_terms, 1 + max_terms), array(array_y_higher_work2, 1 + 2, 1 + max_terms), array(array_real_pole, 1 + 1, 1 + 3), array(array_y_set_initial, 1 + 2, 1 + max_terms), array(array_y_higher_work, 1 + 2, 1 + max_terms), array(array_poles, 1 + 1, 1 + 3), array(array_y_higher, 1 + 2, 1 + max_terms), array(array_complex_pole, 1 + 1, 1 + 3), term : 1, while term <= max_terms do (array_tmp0 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp1 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp2 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp3 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp4 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_last_rel_error : 0.0, term : 1 + term), term term : 1, while term <= max_terms do (array_fact_1 : 0.0, term term : 1 + term), term : 1, while term <= max_terms do (array_type_pole : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_1st_rel_error : 0.0, term : 1 + term), term term : 1, while term <= max_terms do (array_pole : 0.0, term : 1 + term), term term : 1, while term <= max_terms do (array_norms : 0.0, term term : 1 + term), term : 1, while term <= max_terms do (array_y_init : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_y : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_x : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_m1 : 0.0, term : 1 + term), ord : 1, term while ord <= max_terms do (term : 1, while term <= max_terms do (array_fact_2 : 0.0, term : 1 + term), ord : 1 + ord), ord, term ord : 1, while ord <= 2 do (term : 1, while term <= max_terms do (array_y_higher_work2 : 0.0, ord, term term : 1 + term), ord : 1 + ord), ord : 1, while ord <= 1 do (term : 1, while term <= 3 do (array_real_pole : 0.0, term : 1 + term), ord : 1 + ord), ord, term ord : 1, while ord <= 2 do (term : 1, while term <= max_terms do (array_y_set_initial : 0.0, ord, term term : 1 + term), ord : 1 + ord), ord : 1, while ord <= 2 do (term : 1, while term <= max_terms do (array_y_higher_work : 0.0, term : 1 + term), ord, term ord : 1 + ord), ord : 1, while ord <= 1 do (term : 1, while term <= 3 do (array_poles : 0.0, term : 1 + term), ord, term ord : 1 + ord), ord : 1, while ord <= 2 do (term : 1, while term <= max_terms do (array_y_higher : 0.0, term : 1 + term), ord, term ord : 1 + ord), ord : 1, while ord <= 1 do (term : 1, while term <= 3 do (array_complex_pole : 0.0, term : 1 + term), ord, term ord : 1 + ord), array(array_tmp4, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp4 : 0.0, term : 1 + term), term array(array_tmp3, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp3 : 0.0, term : 1 + term), term array(array_tmp2, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp2 : 0.0, term : 1 + term), term array(array_tmp1, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp1 : 0.0, term : 1 + term), term array(array_tmp0, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp0 : 0.0, term : 1 + term), term array(array_x, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_x : 0.0, term : 1 + term), term array(array_y, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_y : 0.0, term : 1 + term), term array(array_const_1D0, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_const_1D0 : 0.0, term : 1 + term), term array_const_1D0 : 1.0, array(array_const_1, 1 + 1 + max_terms), term : 1, 1 while term <= 1 + max_terms do (array_const_1 : 0.0, term : 1 + term), term array_const_1 : 1, array(array_const_0D0, 1 + 1 + max_terms), term : 1, 1 while term <= 1 + max_terms do (array_const_0D0 : 0.0, term : 1 + term), term array_const_0D0 : 0.0, array(array_m1, 1 + 1 + max_terms), term : 1, 1 while term <= max_terms do (array_m1 : 0.0, term : 1 + term), term array_m1 : - 1.0, iiif : 0, while iiif <= glob_max_terms do (jjjf : 0, 1 while jjjf <= glob_max_terms do (array_fact_1 : 0, iiif array_fact_2 : 0, jjjf : 1 + jjjf), iiif : 1 + iiif), iiif, jjjf x_start : - 2.0, x_end : 1.0, glob_h : 1.0E-5, array_y_init : exact_soln_y(x_start), glob_look_poles : true, 1 + 0 glob_max_iter : 100, glob_h : 1.0E-5, glob_look_poles : true, glob_max_iter : 100, glob_max_minutes : 1, glob_last_good_h : glob_h, glob_max_terms : max_terms, glob_max_sec : convfloat(3600.0) convfloat(glob_max_hours) + convfloat(60.0) convfloat(glob_max_minutes), glob_abserr : expt(10.0, glob_log10_abserr), glob_relerr : expt(10.0, glob_log10_relerr), chk_data(), array_y_set_initial : true, array_y_set_initial : false, 1, 1 1, 2 array_y_set_initial : false, array_y_set_initial : false, 1, 3 1, 4 array_y_set_initial : false, array_y_set_initial : false, 1, 5 1, 6 array_y_set_initial : false, array_y_set_initial : false, 1, 7 1, 8 array_y_set_initial : false, array_y_set_initial : false, 1, 9 1, 10 array_y_set_initial : false, array_y_set_initial : false, 1, 11 1, 12 array_y_set_initial : false, array_y_set_initial : false, 1, 13 1, 14 array_y_set_initial : false, array_y_set_initial : false, 1, 15 1, 16 array_y_set_initial : false, array_y_set_initial : false, 1, 17 1, 18 array_y_set_initial : false, array_y_set_initial : false, 1, 19 1, 20 array_y_set_initial : false, array_y_set_initial : false, 1, 21 1, 22 array_y_set_initial : false, array_y_set_initial : false, 1, 23 1, 24 array_y_set_initial : false, array_y_set_initial : false, 1, 25 1, 26 array_y_set_initial : false, array_y_set_initial : false, 1, 27 1, 28 array_y_set_initial : false, array_y_set_initial : false, 1, 29 1, 30 if glob_html_log then html_log_file : openw("html/entry.html"), omniout_str(ALWAYS, "START of Soultion"), array_x : x_start, 1 array_x : glob_h, order_diff : 1, term_no : 1, 2 while term_no <= order_diff do (array_y : term_no array_y_init expt(glob_h, term_no - 1) term_no ---------------------------------------------, term_no : 1 + term_no), factorial_1(term_no - 1) rows : order_diff, r_order : 1, while r_order <= rows do (term_no : 1, while term_no <= 1 - r_order + rows do (it : - 1 + r_order + term_no, array_y_init expt(glob_h, term_no - 1) it array_y_higher : ----------------------------------------, r_order, term_no factorial_1(term_no - 1) term_no : 1 + term_no), r_order : 1 + r_order), current_iter : 1, glob_clock_start_sec : elapsed_time_seconds(), if omniabs(array_y_higher ) > glob_small_float 1, 1 then (tmp : omniabs(array_y_higher ), log10norm : log10(tmp), 1, 1 if log10norm < glob_log10normmin then glob_log10normmin : log10norm), display_alot(current_iter), glob_clock_sec : elapsed_time_seconds(), glob_current_iter : 0, glob_iter : 0, omniout_str(DEBUGL, " "), glob_reached_optimal_h : true, glob_optimal_clock_start_sec : elapsed_time_seconds(), while (glob_current_iter < glob_max_iter) and (array_x <= x_end) and (convfloat(glob_clock_sec) - convfloat(glob_orig_start_sec) < 1 convfloat(glob_max_sec)) do (omniout_str (INFO, " "), omniout_str(INFO, "TOP MAIN SOLVE Loop"), glob_iter : 1 + glob_iter, glob_clock_sec : elapsed_time_seconds(), glob_current_iter : 1 + glob_current_iter, atomall(), if glob_look_poles then check_for_pole(), array_x : glob_h + array_x , 1 1 array_x : glob_h, order_diff : 1, ord : 2, calc_term : 1, 2 iii : glob_max_terms, while iii >= calc_term do (array_y_higher_work : 2, iii array_y_higher 2, iii --------------------------- expt(glob_h, calc_term - 1) -------------------------------------, iii : iii - 1), temp_sum : 0.0, factorial_3(iii - calc_term, iii - 1) ord : 2, calc_term : 1, iii : glob_max_terms, while iii >= calc_term do (temp_sum : array_y_higher_work + temp_sum, ord, iii iii : iii - 1), array_y_higher_work2 : ord, calc_term temp_sum expt(glob_h, calc_term - 1) ------------------------------------, ord : 1, calc_term : 2, factorial_1(calc_term - 1) iii : glob_max_terms, while iii >= calc_term do (array_y_higher_work : 1, iii array_y_higher 1, iii --------------------------- expt(glob_h, calc_term - 1) -------------------------------------, iii : iii - 1), temp_sum : 0.0, factorial_3(iii - calc_term, iii - 1) ord : 1, calc_term : 2, iii : glob_max_terms, while iii >= calc_term do (temp_sum : array_y_higher_work + temp_sum, ord, iii iii : iii - 1), array_y_higher_work2 : ord, calc_term temp_sum expt(glob_h, calc_term - 1) ------------------------------------, ord : 1, calc_term : 1, factorial_1(calc_term - 1) iii : glob_max_terms, while iii >= calc_term do (array_y_higher_work : 1, iii array_y_higher 1, iii --------------------------- expt(glob_h, calc_term - 1) -------------------------------------, iii : iii - 1), temp_sum : 0.0, factorial_3(iii - calc_term, iii - 1) ord : 1, calc_term : 1, iii : glob_max_terms, while iii >= calc_term do (temp_sum : array_y_higher_work + temp_sum, ord, iii iii : iii - 1), array_y_higher_work2 : ord, calc_term temp_sum expt(glob_h, calc_term - 1) ------------------------------------, term_no : glob_max_terms, factorial_1(calc_term - 1) while term_no >= 1 do (array_y : array_y_higher_work2 , term_no 1, term_no ord : 1, while ord <= order_diff do (array_y_higher : ord, term_no array_y_higher_work2 , ord : 1 + ord), term_no : term_no - 1), ord, term_no display_alot(current_iter)), omniout_str(ALWAYS, "Finished!"), if glob_iter >= glob_max_iter then omniout_str(ALWAYS, "Maximum Iterations Reached before Solution Completed!"), if elapsed_time_seconds() - convfloat(glob_orig_start_sec) >= convfloat(glob_max_sec) then omniout_str(ALWAYS, "Maximum Time Reached before Solution Completed!"), glob_clock_sec : elapsed_time_seconds(), omniout_str(INFO, "diff ( y , x , 1 ) = 1.0/ (x * x + 1.0) ;"), omniout_int(INFO, "Iterations ", 32, glob_iter, 4, " "), prog_report(x_start, x_end), if glob_html_log then (logstart(html_log_file), logitem_str(html_log_file, "2012-08-12T23:51:20-05:00"), logitem_str(html_log_file, "Maxima"), logitem_str(html_log_file, "sing2"), logitem_str(html_log_file, "diff ( y , x , 1 ) = 1.0/ (x * x + 1.0) ;"), logitem_float(html_log_file, x_start), logitem_float(html_log_file, x_end), logitem_float(html_log_file, array_x ), logitem_float(html_log_file, glob_h), 1 logitem_str(html_log_file, "16"), logitem_integer(html_log_file, glob_max_terms), logitem_float(html_log_file, array_1st_rel_error ), 1 logitem_float(html_log_file, array_last_rel_error ), 1 logitem_integer(html_log_file, glob_iter), logitem_pole(html_log_file, array_type_pole ), 1 if (array_type_pole = 1) or (array_type_pole = 2) 1 1 then (logitem_float(html_log_file, array_pole ), 1 logitem_float(html_log_file, array_pole ), 0) 2 else (logitem_str(html_log_file, "NA"), logitem_str(html_log_file, "NA"), 0), logitem_time(html_log_file, convfloat(glob_clock_sec)), if glob_percent_done < 100.0 then (logitem_time(html_log_file, convfloat(glob_optimal_expect_sec)), 0) else (logitem_str(html_log_file, "Done"), 0), log_revs(html_log_file, " 119 "), logitem_str(html_log_file, "sing2 diffeq.max"), logitem_str(html_log_file, "sing2 maxima results"), logitem_str(html_log_file, "1st test with c++"), logend(html_log_file)), if glob_html_log then close(html_log_file)) (%i48) main() "##############ECHO OF PROBLEM#################" "##############temp/sing2postode.ode#################" "diff ( y , x , 1 ) = 1.0/ (x * x + 1.0) ;" "!" "/* BEGIN FIRST INPUT BLOCK */" "Digits : 32," "max_terms : 30," "!" "/* END FIRST INPUT BLOCK */" "/* BEGIN SECOND INPUT BLOCK */" "x_start : -2.0," "x_end : 1.0," "glob_h : 0.00001," "array_y_init[0 + 1] : exact_soln_y(x_start)," "glob_look_poles : true," "glob_max_iter : 100," "/* END SECOND INPUT BLOCK */" "/* BEGIN OVERRIDE BLOCK */" "glob_h : 0.00001 ," "glob_look_poles : true," "glob_max_iter : 100," "glob_max_minutes : 1," "/* END OVERRIDE BLOCK */" "!" "/* BEGIN USER DEF BLOCK */" "exact_soln_y (x) := (" " (arctan(x)) " ");" "" "" "/* END USER DEF BLOCK */" "#######END OF ECHO OF PROBLEM#################" "START of Soultion" x[1] = -2. " " y[1] (analytic) = -1.1071487177940906 " " y[1] (numeric) = -1.1071487177940906 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243797808043439 " " Order of pole = 2.1818134489404066 " " x[1] = -1.99999 " " y[1] (analytic) = -1.1071467177860905 " " y[1] (numeric) = -1.1071467177860905 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.24378882934641 " " Order of pole = 2.1818132525076273 " " x[1] = -1.9999799999999999 " " y[1] (analytic) = -1.1071447177620906 " " y[1] (numeric) = -1.1071447177620903 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005560803052537400000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243779850648106 " " Order of pole = 2.181813055950183 " " x[1] = -1.9999699999999998 " " y[1] (analytic) = -1.1071427177220896 " " y[1] (numeric) = -1.1071427177220898 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005564426074002000000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2437708719484784 " " Order of pole = 2.181812859267321 " " x[1] = -1.9999599999999997 " " y[1] (analytic) = -1.1071407176660883 " " y[1] (numeric) = -1.1071407176660888 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.011136098275080400000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2437618932477283 " " Order of pole = 2.181812662461976 " " x[1] = -1.9999499999999997 " " y[1] (analytic) = -1.1071387175940866 " " y[1] (numeric) = -1.107138717594087 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.01114334448630800000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243752914545524 " " Order of pole = 2.1818124655293616 " " x[1] = -1.9999399999999996 " " y[1] (analytic) = -1.107136717506084 " " y[1] (numeric) = -1.1071367175060842 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005575295390843400000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243743935842211 " " Order of pole = 2.1818122684745163 " " x[1] = -1.9999299999999995 " " y[1] (analytic) = -1.1071347174020802 " " y[1] (numeric) = -1.1071347174020805 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005578918580609700000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243734957137598 " " Order of pole = 2.1818120712945763 " " x[1] = -1.9999199999999995 " " y[1] (analytic) = -1.107132717282075 " " y[1] (numeric) = -1.1071327172820755 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.01116508362490800000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2437259784317893 " " Order of pole = 2.181811873991098 " " x[1] = -1.9999099999999994 " " y[1] (analytic) = -1.107130717146069 " " y[1] (numeric) = -1.1071307171460691 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005586165086375700000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2437169997246547 " " Order of pole = 2.181811676562255 " " x[1] = -1.9998999999999993 " " y[1] (analytic) = -1.107128716994061 " " y[1] (numeric) = -1.1071287169940611 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005589788402376300000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243708021016328 " " Order of pole = 2.181811479009877 " " x[1] = -1.9998899999999993 " " y[1] (analytic) = -1.1071267168260512 " " y[1] (numeric) = -1.1071267168260515 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005593411760456500000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243699042306436 " " Order of pole = 2.1818112813286845 " " x[1] = -1.9998799999999992 " " y[1] (analytic) = -1.1071247166420395 " " y[1] (numeric) = -1.1071247166420397 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005597035160617500000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243690063595794 " " Order of pole = 2.181811083530288 " " x[1] = -1.9998699999999991 " " y[1] (analytic) = -1.1071227164420259 " " y[1] (numeric) = -1.1071227164420259 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243681084883466 " " Order of pole = 2.181810885601312 " " x[1] = -1.999859999999999 " " y[1] (analytic) = -1.1071207162260097 " " y[1] (numeric) = -1.1071207162260097 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2436721061700604 " " Order of pole = 2.1818106875504917 " " x[1] = -1.999849999999999 " " y[1] (analytic) = -1.107118715993991 " " y[1] (numeric) = -1.1071187159939913 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.00560790561358780000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2436631274554952 " " Order of pole = 2.181810489376584 " " x[1] = -1.999839999999999 " " y[1] (analytic) = -1.10711671574597 " " y[1] (numeric) = -1.10711671574597 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2436541487395796 " " Order of pole = 2.1818102910769284 " " x[1] = -1.9998299999999989 " " y[1] (analytic) = -1.107114715481946 " " y[1] (numeric) = -1.107114715481946 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2436451700225626 " " Order of pole = 2.1818100926550343 " " x[1] = -1.9998199999999988 " " y[1] (analytic) = -1.107112715201919 " " y[1] (numeric) = -1.1071127152019191 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.00561877644530600000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2436361913040566 " " Order of pole = 2.1818098941054025 " " x[1] = -1.9998099999999988 " " y[1] (analytic) = -1.107110714905889 " " y[1] (numeric) = -1.107110714905889 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2436272125842303 " " Order of pole = 2.1818096954304096 " " x[1] = -1.9997999999999987 " " y[1] (analytic) = -1.1071087145938554 " " y[1] (numeric) = -1.1071087145938554 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2436182338633484 " " Order of pole = 2.1818094966338535 " " x[1] = -1.9997899999999986 " " y[1] (analytic) = -1.1071067142658184 " " y[1] (numeric) = -1.1071067142658184 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2436092551413016 " " Order of pole = 2.1818092977140964 " " x[1] = -1.9997799999999986 " " y[1] (analytic) = -1.1071047139217778 " " y[1] (numeric) = -1.1071047139217778 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243600276417725 " " Order of pole = 2.1818090986660863 " " x[1] = -1.9997699999999985 " " y[1] (analytic) = -1.107102713561733 " " y[1] (numeric) = -1.1071027135617333 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.00563689533988200000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243591297692952 " " Order of pole = 2.1818088994943743 " " x[1] = -1.9997599999999984 " " y[1] (analytic) = -1.1071007131856847 " " y[1] (numeric) = -1.1071007131856847 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2435823189670834 " " Order of pole = 2.1818087002006337 " " x[1] = -1.9997499999999984 " " y[1] (analytic) = -1.1070987127936318 " " y[1] (numeric) = -1.1070987127936318 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243573340239986 " " Order of pole = 2.1818085007827435 " " x[1] = -1.9997399999999983 " " y[1] (analytic) = -1.1070967123855744 " " y[1] (numeric) = -1.1070967123855746 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005647767181686600000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243564361511328 " " Order of pole = 2.181808301236085 " " x[1] = -1.9997299999999982 " " y[1] (analytic) = -1.1070947119615124 " " y[1] (numeric) = -1.1070947119615129 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.011302782426271500000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2435553827817607 " " Order of pole = 2.1818081015699704 " " x[1] = -1.9997199999999982 " " y[1] (analytic) = -1.1070927115214462 " " y[1] (numeric) = -1.1070927115214464 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005655015286675600000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243546404050817 " " Order of pole = 2.181807901777635 " " x[1] = -1.999709999999998 " " y[1] (analytic) = -1.1070907110653747 " " y[1] (numeric) = -1.107090711065375 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.00565863940230800000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.24353742531847 " " Order of pole = 2.181807701858702 " " x[1] = -1.999699999999998 " " y[1] (analytic) = -1.107088710593298 " " y[1] (numeric) = -1.1070887105932983 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005662263560033500000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243528446585281 " " Order of pole = 2.1818075018213 " " x[1] = -1.999689999999998 " " y[1] (analytic) = -1.1070867101052162 " " y[1] (numeric) = -1.1070867101052164 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005665887759852400000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243519467850549 " " Order of pole = 2.181807301655347 " " x[1] = -1.999679999999998 " " y[1] (analytic) = -1.1070847096011287 " " y[1] (numeric) = -1.1070847096011291 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.01133902400353300000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243510489114469 " " Order of pole = 2.1818071013635283 " " x[1] = -1.9996699999999978 " " y[1] (analytic) = -1.1070827090810358 " " y[1] (numeric) = -1.1070827090810362 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.011346272571549300000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2435015103772016 " " Order of pole = 2.181806900948235 " " x[1] = -1.9996599999999978 " " y[1] (analytic) = -1.107080708544937 " " y[1] (numeric) = -1.1070807085449375 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.01135352122375800000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243492531638835 " " Order of pole = 2.1818067004108457 " " x[1] = -1.9996499999999977 " " y[1] (analytic) = -1.107078707992832 " " y[1] (numeric) = -1.1070787079928326 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01704115494024100000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2434835528991535 " " Order of pole = 2.181806499748042 " " x[1] = -1.9996399999999976 " " y[1] (analytic) = -1.107076707424721 " " y[1] (numeric) = -1.1070767074247216 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01705202817113500000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243474574158222 " " Order of pole = 2.1818062989608897 " " x[1] = -1.9996299999999976 " " y[1] (analytic) = -1.1070747068406037 " " y[1] (numeric) = -1.1070747068406044 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01706290152832200000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2434655954159917 " " Order of pole = 2.1818060980486216 " " x[1] = -1.9996199999999975 " " y[1] (analytic) = -1.10707270624048 " " y[1] (numeric) = -1.1070727062404806 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01707377501180500000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2434566166724297 " " Order of pole = 2.1818058970108005 " " x[1] = -1.9996099999999974 " " y[1] (analytic) = -1.1070707056243496 " " y[1] (numeric) = -1.10707070562435 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.01138976574772300000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243447637927823 " " Order of pole = 2.1818056958515477 " " x[1] = -1.9995999999999974 " " y[1] (analytic) = -1.1070687049922123 " " y[1] (numeric) = -1.1070687049922128 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.0113970149051100000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.24343865918183 " " Order of pole = 2.1818054945659426 " " x[1] = -1.9995899999999973 " " y[1] (analytic) = -1.107066704344068 " " y[1] (numeric) = -1.1070667043440683 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005702132073348700000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2434296804347658 " " Order of pole = 2.1818052931585257 " " x[1] = -1.9995799999999972 " " y[1] (analytic) = -1.1070647036799166 " " y[1] (numeric) = -1.1070647036799166 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2434207016861767 " " Order of pole = 2.181805091622749 " " x[1] = -1.9995699999999972 " " y[1] (analytic) = -1.1070627029997573 " " y[1] (numeric) = -1.1070627029997575 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005709381441242400000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243411722936514 " " Order of pole = 2.1818048899650755 " " x[1] = -1.9995599999999971 " " y[1] (analytic) = -1.1070607023035908 " " y[1] (numeric) = -1.107060702303591 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.00571300618834300000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2434027441856292 " " Order of pole = 2.1818046881834796 " " x[1] = -1.999549999999997 " " y[1] (analytic) = -1.1070587015914164 " " y[1] (numeric) = -1.1070587015914166 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005716630977546800000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2433937654335945 " " Order of pole = 2.1818044862788177 " " x[1] = -1.999539999999997 " " y[1] (analytic) = -1.1070567008632342 " " y[1] (numeric) = -1.1070567008632344 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.00572025580885500000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243384786680061 " " Order of pole = 2.181804284246251 " " x[1] = -1.999529999999997 " " y[1] (analytic) = -1.1070547001190438 " " y[1] (numeric) = -1.107054700119044 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.00572388068226800000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243375807925302 " " Order of pole = 2.1818040820896307 " " x[1] = -1.9995199999999969 " " y[1] (analytic) = -1.1070526993588454 " " y[1] (numeric) = -1.1070526993588454 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2433668291695 " " Order of pole = 2.1818038798115538 " " x[1] = -1.9995099999999968 " " y[1] (analytic) = -1.107050698582638 " " y[1] (numeric) = -1.1070506985826383 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005731130555411800000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2433578504124294 " " Order of pole = 2.1818036774088156 " " x[1] = -1.9994999999999967 " " y[1] (analytic) = -1.1070486977904226 " " y[1] (numeric) = -1.1070486977904226 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2433488716539642 " " Order of pole = 2.1818034748795405 " " x[1] = -1.9994899999999967 " " y[1] (analytic) = -1.107046696982198 " " y[1] (numeric) = -1.1070466969821982 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005738380596983300000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2433398928941797 " " Order of pole = 2.181803272224883 " " x[1] = -1.9994799999999966 " " y[1] (analytic) = -1.1070446961579645 " " y[1] (numeric) = -1.1070446961579647 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005742005680931600000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2433309141333715 " " Order of pole = 2.1818030694490247 " " x[1] = -1.9994699999999965 " " y[1] (analytic) = -1.107042695317722 " " y[1] (numeric) = -1.1070426953177221 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005745630806988500000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2433219353710943 " " Order of pole = 2.18180286654567 " " x[1] = -1.9994599999999965 " " y[1] (analytic) = -1.10704069446147 " " y[1] (numeric) = -1.1070406944614701 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005749255975155800000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2433129566077525 " " Order of pole = 2.181802663520525 " " x[1] = -1.9994499999999964 " " y[1] (analytic) = -1.1070386935892085 " " y[1] (numeric) = -1.1070386935892087 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005752881185433300000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243303977843115 " " Order of pole = 2.1818024603702675 " " x[1] = -1.9994399999999963 " " y[1] (analytic) = -1.1070366927009376 " " y[1] (numeric) = -1.1070366927009376 " " absolute error = 0.0 " " relative error = 0.0 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2432949990773254 " " Order of pole = 2.181802257097001 " " x[1] = -1.9994299999999963 " " y[1] (analytic) = -1.1070346917966563 " " y[1] (numeric) = -1.1070346917966567 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.011520263464646300000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243286020310266 " " Order of pole = 2.1818020536990055 " " x[1] = -1.9994199999999962 " " y[1] (analytic) = -1.1070326908763652 " " y[1] (numeric) = -1.1070326908763657 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.01152751413787300000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2432770415418726 " " Order of pole = 2.181801850175436 " " x[1] = -1.9994099999999961 " " y[1] (analytic) = -1.1070306899400641 " " y[1] (numeric) = -1.1070306899400644 " " absolute error = 2.2204460492503130000000000000000E-16 " " relative error = 2.005767382447663200000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2432680627724055 " " Order of pole = 2.181801646529969 " " x[1] = -1.999399999999996 " " y[1] (analytic) = -1.1070286889877523 " " y[1] (numeric) = -1.1070286889877528 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.01154201573700900000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243259084001408 " " Order of pole = 2.1818014427559618 " " x[1] = -1.999389999999996 " " y[1] (analytic) = -1.1070266880194302 " " y[1] (numeric) = -1.1070266880194306 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.0115492666629200000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243250105229428 " " Order of pole = 2.1818012388614427 " " x[1] = -1.999379999999996 " " y[1] (analytic) = -1.1070246870350973 " " y[1] (numeric) = -1.1070246870350977 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.011556517673062000000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2432411264561396 " " Order of pole = 2.1818010348415484 " " x[1] = -1.9993699999999959 " " y[1] (analytic) = -1.1070226860347534 " " y[1] (numeric) = -1.1070226860347538 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.01156376876743660000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243232147681505 " " Order of pole = 2.1818008306959307 " " x[1] = -1.9993599999999958 " " y[1] (analytic) = -1.1070206850183983 " " y[1] (numeric) = -1.107020685018399 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01735652991906900000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243223168905756 " " Order of pole = 2.181800626427716 " " x[1] = -1.9993499999999957 " " y[1] (analytic) = -1.1070186839860323 " " y[1] (numeric) = -1.1070186839860328 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.011578271208889000000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243214190128704 " " Order of pole = 2.1818004220343674 " " x[1] = -1.9993399999999957 " " y[1] (analytic) = -1.1070166829376544 " " y[1] (numeric) = -1.107016682937655 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01737828383395300000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243205211350481 " " Order of pole = 2.181800217517708 " " x[1] = -1.9993299999999956 " " y[1] (analytic) = -1.1070146818732653 " " y[1] (numeric) = -1.1070146818732658 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.01159277398728700000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243196232571013 " " Order of pole = 2.1818000128766393 " " x[1] = -1.9993199999999955 " " y[1] (analytic) = -1.1070126807928642 " " y[1] (numeric) = -1.1070126807928646 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.01160002550284440000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243187253790188 " " Order of pole = 2.18179980810957 " " x[1] = -1.9993099999999955 " " y[1] (analytic) = -1.107010679696451 " " y[1] (numeric) = -1.1070106796964516 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01741091565396500000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2431782750080647 " " Order of pole = 2.1817996032173887 " " x[1] = -1.9992999999999954 " " y[1] (analytic) = -1.107008678584026 " " y[1] (numeric) = -1.1070086785840265 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.01161452878668300000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.24316929622496 " " Order of pole = 2.1817993982046247 " " x[1] = -1.9992899999999953 " " y[1] (analytic) = -1.1070066774555882 " " y[1] (numeric) = -1.107006677455589 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01743267083245200000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2431603174405272 " " Order of pole = 2.181799193066258 " " x[1] = -1.9992799999999953 " " y[1] (analytic) = -1.1070046763111383 " " y[1] (numeric) = -1.107004676311139 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01744354861124700000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243151338654787 " " Order of pole = 2.1817989878025728 " " x[1] = -1.9992699999999952 " " y[1] (analytic) = -1.1070026751506756 " " y[1] (numeric) = -1.1070026751506763 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01745442651640900000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2431423598678175 " " Order of pole = 2.181798782414713 " " x[1] = -1.9992599999999952 " " y[1] (analytic) = -1.1070006739742 " " y[1] (numeric) = -1.1070006739742007 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01746530454794400000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2431333810796437 " " Order of pole = 2.1817985769030876 " " x[1] = -1.999249999999995 " " y[1] (analytic) = -1.1069986727817116 " " y[1] (numeric) = -1.106998672781712 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 4.01165078847056800000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2431244022902557 " " Order of pole = 2.1817983712674973 " " x[1] = -1.999239999999995 " " y[1] (analytic) = -1.1069966715732096 " " y[1] (numeric) = -1.1069966715732102 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01748706099013900000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243115423499547 " " Order of pole = 2.181798165506411 " " x[1] = -1.999229999999995 " " y[1] (analytic) = -1.1069946703486944 " " y[1] (numeric) = -1.106994670348695 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01749793940080300000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2431064447077826 " " Order of pole = 2.1817979596236867 " " x[1] = -1.999219999999995 " " y[1] (analytic) = -1.1069926691081657 " " y[1] (numeric) = -1.1069926691081664 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01750881793784600000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243097465914575 " " Order of pole = 2.1817977536137008 " " x[1] = -1.9992099999999948 " " y[1] (analytic) = -1.1069906678516233 " " y[1] (numeric) = -1.106990667851624 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01751969660127200000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2430884871203145 " " Order of pole = 2.1817975474820805 " " x[1] = -1.9991999999999948 " " y[1] (analytic) = -1.106988666579067 " " y[1] (numeric) = -1.1069886665790676 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01753057539108100000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.24307950832461 " " Order of pole = 2.181797341223138 " " x[1] = -1.9991899999999947 " " y[1] (analytic) = -1.1069866652904963 " " y[1] (numeric) = -1.1069866652904972 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 8.0233886057430390000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243070529527757 " " Order of pole = 2.1817971348411938 " " x[1] = -1.9991799999999946 " " y[1] (analytic) = -1.1069846639859118 " " y[1] (numeric) = -1.1069846639859124 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01755233334986400000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2430615507297915 " " Order of pole = 2.181796928336773 " " x[1] = -1.9991699999999946 " " y[1] (analytic) = -1.1069826626653125 " " y[1] (numeric) = -1.1069826626653132 " " absolute error = 6.6613381477509390000000000000000E-16 " " relative error = 6.01756321251884200000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243052571930477 " " Order of pole = 2.181796721706423 " " x[1] = -1.9991599999999945 " " y[1] (analytic) = -1.1069806613286985 " " y[1] (numeric) = -1.1069806613286994 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 8.0234321224189500000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243043593129871 " " Order of pole = 2.1817965149509995 " " x[1] = -1.9991499999999944 " " y[1] (analytic) = -1.10697865997607 " " y[1] (numeric) = -1.106978659976071 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 8.02344662831463600000000000000E-14 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243034614328213 " " Order of pole = 2.18179630807391 " " x[1] = -1.9991399999999944 " " y[1] (analytic) = -1.1069766586074263 " " y[1] (numeric) = -1.1069766586074274 " " absolute error = 1.1102230246251565000000000000000E-15 " " relative error = 1.00293264179735650000000000000E-13 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.243025635525242 " " Order of pole = 2.181796101071466 " " x[1] = -1.9991299999999943 " " y[1] (analytic) = -1.1069746572227677 " " y[1] (numeric) = -1.1069746572227688 " " absolute error = 1.1102230246251565000000000000000E-15 " " relative error = 1.002934455076450000000000000E-13 "%" h = 1.00000E-5 " " " " "TOP MAIN SOLVE Loop" "Complex estimate of poles used" Radius of convergence = 2.2430166567209215 " " Order of pole = 2.181795893943029 " " x[1] = -1.9991199999999942 " " y[1] (analytic) = -1.1069726558220938 " " y[1] (numeric) = -1.1069726558220947 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 8.02349014701288300000000000000E-14 "%" h = 1.00000E-5 " " "Finished!" "Maximum Time Reached before Solution Completed!" "diff ( y , x , 1 ) = 1.0/ (x * x + 1.0) ;" Iterations = 88 "Total Elapsed Time "= 1 Minutes 0 Seconds "Elapsed Time(since restart) "= 59 Seconds "Expected Time Remaining "= 2 Days 9 Hours 0 Minutes 53 Seconds "Optimized Time Remaining "= 2 Days 8 Hours 0 Minutes 42 Seconds "Time to Timeout " Unknown Percent Done = 2.96666666668610200E-2 "%" (%o48) true (%o48) diffeq.max