|\^/| Maple 12 (IBM INTEL LINUX) ._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2008 \ MAPLE / All rights reserved. Maple is a trademark of <____ ____> Waterloo Maple Inc. | Type ? for help. > #BEGIN OUTFILE1 > > # Begin Function number 3 > display_alot := proc(iter) > global > DEBUGMASSIVE, > INFO, > ALWAYS, > glob_max_terms, > DEBUGL, > glob_iolevel, > #Top Generate Globals Decl > glob_iter, > glob_small_float, > glob_hmin, > djd_debug, > glob_dump, > glob_normmax, > glob_relerr, > glob_last_good_h, > glob_h, > glob_not_yet_start_msg, > glob_optimal_expect_sec, > glob_warned, > glob_smallish_float, > glob_max_hours, > glob_hmin_init, > glob_optimal_done, > glob_almost_1, > days_in_year, > sec_in_minute, > glob_log10relerr, > glob_warned2, > glob_max_rel_trunc_err, > glob_max_iter, > glob_log10_relerr, > glob_log10_abserr, > glob_dump_analytic, > glob_hmax, > glob_reached_optimal_h, > glob_display_flag, > glob_subiter_method, > glob_log10abserr, > glob_orig_start_sec, > glob_optimal_start, > glob_large_float, > MAX_UNCHANGED, > glob_curr_iter_when_opt, > glob_optimal_clock_start_sec, > glob_abserr, > years_in_century, > glob_percent_done, > glob_unchanged_h_cnt, > glob_no_eqs, > glob_initial_pass, > glob_not_yet_finished, > hours_in_day, > djd_debug2, > glob_max_minutes, > glob_max_sec, > glob_disp_incr, > glob_clock_start_sec, > glob_clock_sec, > glob_log10normmin, > glob_current_iter, > glob_start, > glob_max_trunc_err, > centuries_in_millinium, > min_in_hour, > glob_html_log, > glob_look_poles, > glob_max_opt_iter, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_1, > array_const_2D0, > array_const_0D0, > array_const_1D0, > #END CONST > array_last_rel_error, > array_1st_rel_error, > array_pole, > array_y_init, > array_type_pole, > array_m1, > array_tmp0, > array_tmp1, > array_tmp2, > array_tmp3, > array_tmp4, > array_tmp5, > array_tmp6, > array_tmp7, > array_tmp8, > array_tmp9, > array_y, > array_x, > array_norms, > array_fact_1, > array_real_pole, > array_poles, > array_y_higher_work2, > array_complex_pole, > array_y_set_initial, > array_fact_2, > array_y_higher_work, > array_y_higher, > glob_last; > > local abserr, analytic_val_y, ind_var, numeric_val, relerr, term_no, good_digits; > > > > > > #TOP DISPLAY ALOT > if (iter >= 0) then # if number 1 > ind_var := array_x[1]; > omniout_float(ALWAYS,"x[1] ",33,ind_var,20," "); > analytic_val_y := exact_soln_y(ind_var); > omniout_float(ALWAYS,"y[1] (analytic) ",33,analytic_val_y,20," "); > term_no := 1; > numeric_val := array_y[term_no]; > abserr := omniabs(numeric_val - analytic_val_y); > omniout_float(ALWAYS,"y[1] (numeric) ",33,numeric_val,20," "); > if (omniabs(analytic_val_y) <> 0.0) then # if number 2 > relerr := abserr*100.0/omniabs(analytic_val_y); > if (relerr <> 0.0) then # if number 3 > good_digits := -trunc(log10(relerr/100.0)); > else > good_digits := -1; > fi;# end if 3 > ; > else > relerr := -1.0 ; > good_digits := -1; > fi;# end if 2 > ; > if (glob_iter = 1) then # if number 2 > array_1st_rel_error[1] := relerr; > else > array_last_rel_error[1] := relerr; > fi;# end if 2 > ; > omniout_float(ALWAYS,"absolute error ",4,abserr,20," "); > omniout_float(ALWAYS,"relative error ",4,relerr,20,"%"); > print("good digits = ",good_digits); > omniout_float(ALWAYS,"h ",4,glob_h,20," "); > #BOTTOM DISPLAY ALOT > fi;# end if 1 > ; > > # End Function number 3 > end; display_alot := proc(iter) local abserr, analytic_val_y, ind_var, numeric_val, relerr, term_no, good_digits; global DEBUGMASSIVE, INFO, ALWAYS, glob_max_terms, DEBUGL, glob_iolevel, glob_iter, glob_small_float, glob_hmin, djd_debug, glob_dump, glob_normmax, glob_relerr, glob_last_good_h, glob_h, glob_not_yet_start_msg, glob_optimal_expect_sec, glob_warned, glob_smallish_float, glob_max_hours, glob_hmin_init, glob_optimal_done, glob_almost_1, days_in_year, sec_in_minute, glob_log10relerr, glob_warned2, glob_max_rel_trunc_err, glob_max_iter, glob_log10_relerr, glob_log10_abserr, glob_dump_analytic, glob_hmax, glob_reached_optimal_h, glob_display_flag, glob_subiter_method, glob_log10abserr, glob_orig_start_sec, glob_optimal_start, glob_large_float, MAX_UNCHANGED, glob_curr_iter_when_opt, glob_optimal_clock_start_sec, glob_abserr, years_in_century, glob_percent_done, glob_unchanged_h_cnt, glob_no_eqs, glob_initial_pass, glob_not_yet_finished, hours_in_day, djd_debug2, glob_max_minutes, glob_max_sec, glob_disp_incr, glob_clock_start_sec, glob_clock_sec, glob_log10normmin, glob_current_iter, glob_start, glob_max_trunc_err, centuries_in_millinium, min_in_hour, glob_html_log, glob_look_poles, glob_max_opt_iter, array_const_1, array_const_2D0, array_const_0D0, array_const_1D0, array_last_rel_error, array_1st_rel_error, array_pole, array_y_init, array_type_pole, array_m1, array_tmp0, array_tmp1, array_tmp2, array_tmp3, array_tmp4, array_tmp5, array_tmp6, array_tmp7, array_tmp8, array_tmp9, array_y, array_x, array_norms, array_fact_1, array_real_pole, array_poles, array_y_higher_work2, array_complex_pole, array_y_set_initial, array_fact_2, array_y_higher_work, array_y_higher, glob_last; if 0 <= iter then ind_var := array_x[1]; omniout_float(ALWAYS, "x[1] ", 33, ind_var, 20, " "); analytic_val_y := exact_soln_y(ind_var); omniout_float(ALWAYS, "y[1] (analytic) ", 33, analytic_val_y, 20, " "); term_no := 1; numeric_val := array_y[term_no]; abserr := omniabs(numeric_val - analytic_val_y); omniout_float(ALWAYS, "y[1] (numeric) ", 33, numeric_val, 20, " "); if omniabs(analytic_val_y) <> 0. then relerr := abserr*100.0/omniabs(analytic_val_y); if relerr <> 0. then good_digits := -trunc(log10(relerr/100.0)) else good_digits := -1 end if else relerr := -1.0; good_digits := -1 end if; if glob_iter = 1 then array_1st_rel_error[1] := relerr else array_last_rel_error[1] := relerr end if; omniout_float(ALWAYS, "absolute error ", 4, abserr, 20, " "); omniout_float(ALWAYS, "relative error ", 4, relerr, 20, "%"); print("good digits = ", good_digits); omniout_float(ALWAYS, "h ", 4, glob_h, 20, " ") end if end proc > # Begin Function number 4 > adjust_for_pole := proc(h_param) > global > DEBUGMASSIVE, > INFO, > ALWAYS, > glob_max_terms, > DEBUGL, > glob_iolevel, > #Top Generate Globals Decl > glob_iter, > glob_small_float, > glob_hmin, > djd_debug, > glob_dump, > glob_normmax, > glob_relerr, > glob_last_good_h, > glob_h, > glob_not_yet_start_msg, > glob_optimal_expect_sec, > glob_warned, > glob_smallish_float, > glob_max_hours, > glob_hmin_init, > glob_optimal_done, > glob_almost_1, > days_in_year, > sec_in_minute, > glob_log10relerr, > glob_warned2, > glob_max_rel_trunc_err, > glob_max_iter, > glob_log10_relerr, > glob_log10_abserr, > glob_dump_analytic, > glob_hmax, > glob_reached_optimal_h, > glob_display_flag, > glob_subiter_method, > glob_log10abserr, > glob_orig_start_sec, > glob_optimal_start, > glob_large_float, > MAX_UNCHANGED, > glob_curr_iter_when_opt, > glob_optimal_clock_start_sec, > glob_abserr, > years_in_century, > glob_percent_done, > glob_unchanged_h_cnt, > glob_no_eqs, > glob_initial_pass, > glob_not_yet_finished, > hours_in_day, > djd_debug2, > glob_max_minutes, > glob_max_sec, > glob_disp_incr, > glob_clock_start_sec, > glob_clock_sec, > glob_log10normmin, > glob_current_iter, > glob_start, > glob_max_trunc_err, > centuries_in_millinium, > min_in_hour, > glob_html_log, > glob_look_poles, > glob_max_opt_iter, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_1, > array_const_2D0, > array_const_0D0, > array_const_1D0, > #END CONST > array_last_rel_error, > array_1st_rel_error, > array_pole, > array_y_init, > array_type_pole, > array_m1, > array_tmp0, > array_tmp1, > array_tmp2, > array_tmp3, > array_tmp4, > array_tmp5, > array_tmp6, > array_tmp7, > array_tmp8, > array_tmp9, > array_y, > array_x, > array_norms, > array_fact_1, > array_real_pole, > array_poles, > array_y_higher_work2, > array_complex_pole, > array_y_set_initial, > array_fact_2, > array_y_higher_work, > array_y_higher, > glob_last; > > local hnew, sz2, tmp; > > > > #TOP ADJUST FOR POLE > > hnew := h_param; > glob_normmax := glob_small_float; > if (omniabs(array_y_higher[1,1]) > glob_small_float) then # if number 1 > tmp := omniabs(array_y_higher[1,1]); > if (tmp < glob_normmax) then # if number 2 > glob_normmax := tmp; > fi;# end if 2 > fi;# end if 1 > ; > if (glob_look_poles and (omniabs(array_pole[1]) > glob_small_float) and (array_pole[1] <> glob_large_float)) then # if number 1 > sz2 := array_pole[1]/10.0; > if (sz2 < hnew) then # if number 2 > omniout_float(INFO,"glob_h adjusted to ",20,h_param,12,"due to singularity."); > omniout_str(INFO,"Reached Optimal"); > return(hnew); > fi;# end if 2 > fi;# end if 1 > ; > if ( not glob_reached_optimal_h) then # if number 1 > glob_reached_optimal_h := true; > glob_curr_iter_when_opt := glob_current_iter; > glob_optimal_clock_start_sec := elapsed_time_seconds(); > glob_optimal_start := array_x[1]; > fi;# end if 1 > ; > hnew := sz2; > ;#END block > return(hnew); > #BOTTOM ADJUST FOR POLE > > # End Function number 4 > end; adjust_for_pole := proc(h_param) local hnew, sz2, tmp; global DEBUGMASSIVE, INFO, ALWAYS, glob_max_terms, DEBUGL, glob_iolevel, glob_iter, glob_small_float, glob_hmin, djd_debug, glob_dump, glob_normmax, glob_relerr, glob_last_good_h, glob_h, glob_not_yet_start_msg, glob_optimal_expect_sec, glob_warned, glob_smallish_float, glob_max_hours, glob_hmin_init, glob_optimal_done, glob_almost_1, days_in_year, sec_in_minute, glob_log10relerr, glob_warned2, glob_max_rel_trunc_err, glob_max_iter, glob_log10_relerr, glob_log10_abserr, glob_dump_analytic, glob_hmax, glob_reached_optimal_h, glob_display_flag, glob_subiter_method, glob_log10abserr, glob_orig_start_sec, glob_optimal_start, glob_large_float, MAX_UNCHANGED, glob_curr_iter_when_opt, glob_optimal_clock_start_sec, glob_abserr, years_in_century, glob_percent_done, glob_unchanged_h_cnt, glob_no_eqs, glob_initial_pass, glob_not_yet_finished, hours_in_day, djd_debug2, glob_max_minutes, glob_max_sec, glob_disp_incr, glob_clock_start_sec, glob_clock_sec, glob_log10normmin, glob_current_iter, glob_start, glob_max_trunc_err, centuries_in_millinium, min_in_hour, glob_html_log, glob_look_poles, glob_max_opt_iter, array_const_1, array_const_2D0, array_const_0D0, array_const_1D0, array_last_rel_error, array_1st_rel_error, array_pole, array_y_init, array_type_pole, array_m1, array_tmp0, array_tmp1, array_tmp2, array_tmp3, array_tmp4, array_tmp5, array_tmp6, array_tmp7, array_tmp8, array_tmp9, array_y, array_x, array_norms, array_fact_1, array_real_pole, array_poles, array_y_higher_work2, array_complex_pole, array_y_set_initial, array_fact_2, array_y_higher_work, array_y_higher, glob_last; hnew := h_param; glob_normmax := glob_small_float; if glob_small_float < omniabs(array_y_higher[1, 1]) then tmp := omniabs(array_y_higher[1, 1]); if tmp < glob_normmax then glob_normmax := tmp end if end if; if glob_look_poles and glob_small_float < omniabs(array_pole[1]) and array_pole[1] <> glob_large_float then sz2 := array_pole[1]/10.0; if sz2 < hnew then omniout_float(INFO, "glob_h adjusted to ", 20, h_param, 12, "due to singularity."); omniout_str(INFO, "Reached Optimal"); return hnew end if end if; if not glob_reached_optimal_h then glob_reached_optimal_h := true; glob_curr_iter_when_opt := glob_current_iter; glob_optimal_clock_start_sec := elapsed_time_seconds(); glob_optimal_start := array_x[1] end if; hnew := sz2; return hnew end proc > # Begin Function number 5 > prog_report := proc(x_start,x_end) > global > DEBUGMASSIVE, > INFO, > ALWAYS, > glob_max_terms, > DEBUGL, > glob_iolevel, > #Top Generate Globals Decl > glob_iter, > glob_small_float, > glob_hmin, > djd_debug, > glob_dump, > glob_normmax, > glob_relerr, > glob_last_good_h, > glob_h, > glob_not_yet_start_msg, > glob_optimal_expect_sec, > glob_warned, > glob_smallish_float, > glob_max_hours, > glob_hmin_init, > glob_optimal_done, > glob_almost_1, > days_in_year, > sec_in_minute, > glob_log10relerr, > glob_warned2, > glob_max_rel_trunc_err, > glob_max_iter, > glob_log10_relerr, > glob_log10_abserr, > glob_dump_analytic, > glob_hmax, > glob_reached_optimal_h, > glob_display_flag, > glob_subiter_method, > glob_log10abserr, > glob_orig_start_sec, > glob_optimal_start, > glob_large_float, > MAX_UNCHANGED, > glob_curr_iter_when_opt, > glob_optimal_clock_start_sec, > glob_abserr, > years_in_century, > glob_percent_done, > glob_unchanged_h_cnt, > glob_no_eqs, > glob_initial_pass, > glob_not_yet_finished, > hours_in_day, > djd_debug2, > glob_max_minutes, > glob_max_sec, > glob_disp_incr, > glob_clock_start_sec, > glob_clock_sec, > glob_log10normmin, > glob_current_iter, > glob_start, > glob_max_trunc_err, > centuries_in_millinium, > min_in_hour, > glob_html_log, > glob_look_poles, > glob_max_opt_iter, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_1, > array_const_2D0, > array_const_0D0, > array_const_1D0, > #END CONST > array_last_rel_error, > array_1st_rel_error, > array_pole, > array_y_init, > array_type_pole, > array_m1, > array_tmp0, > array_tmp1, > array_tmp2, > array_tmp3, > array_tmp4, > array_tmp5, > array_tmp6, > array_tmp7, > array_tmp8, > array_tmp9, > array_y, > array_x, > array_norms, > array_fact_1, > array_real_pole, > array_poles, > array_y_higher_work2, > array_complex_pole, > array_y_set_initial, > array_fact_2, > array_y_higher_work, > array_y_higher, > glob_last; > > local clock_sec, opt_clock_sec, clock_sec1, expect_sec, left_sec, percent_done, total_clock_sec; > > > > > > #TOP PROGRESS REPORT > clock_sec1 := elapsed_time_seconds(); > total_clock_sec := convfloat(clock_sec1) - convfloat(glob_orig_start_sec); > glob_clock_sec := convfloat(clock_sec1) - convfloat(glob_clock_start_sec); > left_sec := convfloat(glob_max_sec) + convfloat(glob_orig_start_sec) - convfloat(clock_sec1); > expect_sec := comp_expect_sec(convfloat(x_end),convfloat(x_start),convfloat(array_x[1]) + convfloat(glob_h) ,convfloat( clock_sec1) - convfloat(glob_orig_start_sec)); > opt_clock_sec := convfloat( clock_sec1) - convfloat(glob_optimal_clock_start_sec); > glob_optimal_expect_sec := comp_expect_sec(convfloat(x_end),convfloat(x_start),convfloat(array_x[1]) +convfloat( glob_h) ,convfloat( opt_clock_sec)); > percent_done := comp_percent(convfloat(x_end),convfloat(x_start),convfloat(array_x[1]) + convfloat(glob_h)); > glob_percent_done := percent_done; > omniout_str_noeol(INFO,"Total Elapsed Time "); > omniout_timestr(convfloat(total_clock_sec)); > omniout_str_noeol(INFO,"Elapsed Time(since restart) "); > omniout_timestr(convfloat(glob_clock_sec)); > if (convfloat(percent_done) < convfloat(100.0)) then # if number 1 > omniout_str_noeol(INFO,"Expected Time Remaining "); > omniout_timestr(convfloat(expect_sec)); > omniout_str_noeol(INFO,"Optimized Time Remaining "); > omniout_timestr(convfloat(glob_optimal_expect_sec)); > fi;# end if 1 > ; > omniout_str_noeol(INFO,"Time to Timeout "); > omniout_timestr(convfloat(left_sec)); > omniout_float(INFO, "Percent Done ",33,percent_done,4,"%"); > #BOTTOM PROGRESS REPORT > > # End Function number 5 > end; prog_report := proc(x_start, x_end) local clock_sec, opt_clock_sec, clock_sec1, expect_sec, left_sec, percent_done, total_clock_sec; global DEBUGMASSIVE, INFO, ALWAYS, glob_max_terms, DEBUGL, glob_iolevel, glob_iter, glob_small_float, glob_hmin, djd_debug, glob_dump, glob_normmax, glob_relerr, glob_last_good_h, glob_h, glob_not_yet_start_msg, glob_optimal_expect_sec, glob_warned, glob_smallish_float, glob_max_hours, glob_hmin_init, glob_optimal_done, glob_almost_1, days_in_year, sec_in_minute, glob_log10relerr, glob_warned2, glob_max_rel_trunc_err, glob_max_iter, glob_log10_relerr, glob_log10_abserr, glob_dump_analytic, glob_hmax, glob_reached_optimal_h, glob_display_flag, glob_subiter_method, glob_log10abserr, glob_orig_start_sec, glob_optimal_start, glob_large_float, MAX_UNCHANGED, glob_curr_iter_when_opt, glob_optimal_clock_start_sec, glob_abserr, years_in_century, glob_percent_done, glob_unchanged_h_cnt, glob_no_eqs, glob_initial_pass, glob_not_yet_finished, hours_in_day, djd_debug2, glob_max_minutes, glob_max_sec, glob_disp_incr, glob_clock_start_sec, glob_clock_sec, glob_log10normmin, glob_current_iter, glob_start, glob_max_trunc_err, centuries_in_millinium, min_in_hour, glob_html_log, glob_look_poles, glob_max_opt_iter, array_const_1, array_const_2D0, array_const_0D0, array_const_1D0, array_last_rel_error, array_1st_rel_error, array_pole, array_y_init, array_type_pole, array_m1, array_tmp0, array_tmp1, array_tmp2, array_tmp3, array_tmp4, array_tmp5, array_tmp6, array_tmp7, array_tmp8, array_tmp9, array_y, array_x, array_norms, array_fact_1, array_real_pole, array_poles, array_y_higher_work2, array_complex_pole, array_y_set_initial, array_fact_2, array_y_higher_work, array_y_higher, glob_last; clock_sec1 := elapsed_time_seconds(); total_clock_sec := convfloat(clock_sec1) - convfloat(glob_orig_start_sec); glob_clock_sec := convfloat(clock_sec1) - convfloat(glob_clock_start_sec); left_sec := convfloat(glob_max_sec) + convfloat(glob_orig_start_sec) - convfloat(clock_sec1); expect_sec := comp_expect_sec(convfloat(x_end), convfloat(x_start), convfloat(array_x[1]) + convfloat(glob_h), convfloat(clock_sec1) - convfloat(glob_orig_start_sec)); opt_clock_sec := convfloat(clock_sec1) - convfloat(glob_optimal_clock_start_sec); glob_optimal_expect_sec := comp_expect_sec(convfloat(x_end), convfloat(x_start), convfloat(array_x[1]) + convfloat(glob_h), convfloat(opt_clock_sec)); percent_done := comp_percent(convfloat(x_end), convfloat(x_start), convfloat(array_x[1]) + convfloat(glob_h)); glob_percent_done := percent_done; omniout_str_noeol(INFO, "Total Elapsed Time "); omniout_timestr(convfloat(total_clock_sec)); omniout_str_noeol(INFO, "Elapsed Time(since restart) "); omniout_timestr(convfloat(glob_clock_sec)); if convfloat(percent_done) < convfloat(100.0) then omniout_str_noeol(INFO, "Expected Time Remaining "); omniout_timestr(convfloat(expect_sec)); omniout_str_noeol(INFO, "Optimized Time Remaining "); omniout_timestr(convfloat(glob_optimal_expect_sec)) end if; omniout_str_noeol(INFO, "Time to Timeout "); omniout_timestr(convfloat(left_sec)); omniout_float(INFO, "Percent Done ", 33, percent_done, 4, "%") end proc > # Begin Function number 6 > check_for_pole := proc() > global > DEBUGMASSIVE, > INFO, > ALWAYS, > glob_max_terms, > DEBUGL, > glob_iolevel, > #Top Generate Globals Decl > glob_iter, > glob_small_float, > glob_hmin, > djd_debug, > glob_dump, > glob_normmax, > glob_relerr, > glob_last_good_h, > glob_h, > glob_not_yet_start_msg, > glob_optimal_expect_sec, > glob_warned, > glob_smallish_float, > glob_max_hours, > glob_hmin_init, > glob_optimal_done, > glob_almost_1, > days_in_year, > sec_in_minute, > glob_log10relerr, > glob_warned2, > glob_max_rel_trunc_err, > glob_max_iter, > glob_log10_relerr, > glob_log10_abserr, > glob_dump_analytic, > glob_hmax, > glob_reached_optimal_h, > glob_display_flag, > glob_subiter_method, > glob_log10abserr, > glob_orig_start_sec, > glob_optimal_start, > glob_large_float, > MAX_UNCHANGED, > glob_curr_iter_when_opt, > glob_optimal_clock_start_sec, > glob_abserr, > years_in_century, > glob_percent_done, > glob_unchanged_h_cnt, > glob_no_eqs, > glob_initial_pass, > glob_not_yet_finished, > hours_in_day, > djd_debug2, > glob_max_minutes, > glob_max_sec, > glob_disp_incr, > glob_clock_start_sec, > glob_clock_sec, > glob_log10normmin, > glob_current_iter, > glob_start, > glob_max_trunc_err, > centuries_in_millinium, > min_in_hour, > glob_html_log, > glob_look_poles, > glob_max_opt_iter, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_1, > array_const_2D0, > array_const_0D0, > array_const_1D0, > #END CONST > array_last_rel_error, > array_1st_rel_error, > array_pole, > array_y_init, > array_type_pole, > array_m1, > array_tmp0, > array_tmp1, > array_tmp2, > array_tmp3, > array_tmp4, > array_tmp5, > array_tmp6, > array_tmp7, > array_tmp8, > array_tmp9, > array_y, > array_x, > array_norms, > array_fact_1, > array_real_pole, > array_poles, > array_y_higher_work2, > array_complex_pole, > array_y_set_initial, > array_fact_2, > array_y_higher_work, > array_y_higher, > glob_last; > > local cnt, dr1, dr2, ds1, ds2, hdrc, m, n, nr1, nr2, ord_no, rad_c, rcs, rm0, rm1, rm2, rm3, rm4, found; > > > > > > #TOP CHECK FOR POLE > #IN RADII REAL EQ = 1 > #Computes radius of convergence and r_order of pole from 3 adjacent Taylor series terms. EQUATUON NUMBER 1 > #Applies to pole of arbitrary r_order on the real axis, > #Due to Prof. George Corliss. > n := glob_max_terms; > m := n - 1 - 1; > while ((m >= 10) and ((omniabs(array_y_higher[1,m]) < glob_small_float) or (omniabs(array_y_higher[1,m-1]) < glob_small_float) or (omniabs(array_y_higher[1,m-2]) < glob_small_float ))) do # do number 2 > m := m - 1; > od;# end do number 2 > ; > if (m > 10) then # if number 1 > rm0 := array_y_higher[1,m]/array_y_higher[1,m-1]; > rm1 := array_y_higher[1,m-1]/array_y_higher[1,m-2]; > hdrc := convfloat(m-1)*rm0-convfloat(m-2)*rm1; > if (omniabs(hdrc) > glob_small_float) then # if number 2 > rcs := glob_h/hdrc; > ord_no := convfloat(m-1)*rm0/hdrc - convfloat(m) + 2.0; > array_real_pole[1,1] := rcs; > array_real_pole[1,2] := ord_no; > else > array_real_pole[1,1] := glob_large_float; > array_real_pole[1,2] := glob_large_float; > fi;# end if 2 > else > array_real_pole[1,1] := glob_large_float; > array_real_pole[1,2] := glob_large_float; > fi;# end if 1 > ; > #BOTTOM RADII REAL EQ = 1 > #TOP RADII COMPLEX EQ = 1 > #Computes radius of convergence for complex conjugate pair of poles. > #from 6 adjacent Taylor series terms > #Also computes r_order of poles. > #Due to Manuel Prieto. > #With a correction by Dennis J. Darland > n := glob_max_terms - 1 - 1; > cnt := 0; > while ((cnt < 5) and (n >= 10)) do # do number 2 > if (omniabs(array_y_higher[1,n]) > glob_small_float) then # if number 1 > cnt := cnt + 1; > else > cnt := 0; > fi;# end if 1 > ; > n := n - 1; > od;# end do number 2 > ; > m := n + cnt; > if (m <= 10) then # if number 1 > array_complex_pole[1,1] := glob_large_float; > array_complex_pole[1,2] := glob_large_float; > elif ((omniabs(array_y_higher[1,m]) >= (glob_large_float)) or (omniabs(array_y_higher[1,m-1]) >=(glob_large_float)) or (omniabs(array_y_higher[1,m-2]) >= (glob_large_float)) or (omniabs(array_y_higher[1,m-3]) >= (glob_large_float)) or (omniabs(array_y_higher[1,m-4]) >= (glob_large_float)) or (omniabs(array_y_higher[1,m-5]) >= (glob_large_float))) then # if number 2 > array_complex_pole[1,1] := glob_large_float; > array_complex_pole[1,2] := glob_large_float; > else > rm0 := (array_y_higher[1,m])/(array_y_higher[1,m-1]); > rm1 := (array_y_higher[1,m-1])/(array_y_higher[1,m-2]); > rm2 := (array_y_higher[1,m-2])/(array_y_higher[1,m-3]); > rm3 := (array_y_higher[1,m-3])/(array_y_higher[1,m-4]); > rm4 := (array_y_higher[1,m-4])/(array_y_higher[1,m-5]); > nr1 := convfloat(m-1)*rm0 - 2.0*convfloat(m-2)*rm1 + convfloat(m-3)*rm2; > nr2 := convfloat(m-2)*rm1 - 2.0*convfloat(m-3)*rm2 + convfloat(m-4)*rm3; > dr1 := (-1.0)/rm1 + 2.0/rm2 - 1.0/rm3; > dr2 := (-1.0)/rm2 + 2.0/rm3 - 1.0/rm4; > ds1 := 3.0/rm1 - 8.0/rm2 + 5.0/rm3; > ds2 := 3.0/rm2 - 8.0/rm3 + 5.0/rm4; > if ((omniabs(nr1 * dr2 - nr2 * dr1) <= glob_small_float) or (omniabs(dr1) <= glob_small_float)) then # if number 3 > array_complex_pole[1,1] := glob_large_float; > array_complex_pole[1,2] := glob_large_float; > else > if (omniabs(nr1*dr2 - nr2 * dr1) > glob_small_float) then # if number 4 > rcs := ((ds1*dr2 - ds2*dr1 +dr1*dr2)/(nr1*dr2 - nr2 * dr1)); > #(Manuels) rcs := (ds1*dr2 - ds2*dr1)/(nr1*dr2 - nr2 * dr1) > ord_no := (rcs*nr1 - ds1)/(2.0*dr1) -convfloat(m)/2.0; > if (omniabs(rcs) > glob_small_float) then # if number 5 > if (rcs > 0.0) then # if number 6 > rad_c := sqrt(rcs) * glob_h; > else > rad_c := glob_large_float; > fi;# end if 6 > else > rad_c := glob_large_float; > ord_no := glob_large_float; > fi;# end if 5 > else > rad_c := glob_large_float; > ord_no := glob_large_float; > fi;# end if 4 > fi;# end if 3 > ; > array_complex_pole[1,1] := rad_c; > array_complex_pole[1,2] := ord_no; > fi;# end if 2 > ; > #BOTTOM RADII COMPLEX EQ = 1 > found := false; > #TOP WHICH RADII EQ = 1 > if ( not found and ((array_real_pole[1,1] = glob_large_float) or (array_real_pole[1,2] = glob_large_float)) and ((array_complex_pole[1,1] <> glob_large_float) and (array_complex_pole[1,2] <> glob_large_float)) and ((array_complex_pole[1,1] > 0.0) and (array_complex_pole[1,2] > 0.0))) then # if number 2 > array_poles[1,1] := array_complex_pole[1,1]; > array_poles[1,2] := array_complex_pole[1,2]; > found := true; > array_type_pole[1] := 2; > if (glob_display_flag) then # if number 3 > omniout_str(ALWAYS,"Complex estimate of poles used"); > fi;# end if 3 > ; > fi;# end if 2 > ; > if ( not found and ((array_real_pole[1,1] <> glob_large_float) and (array_real_pole[1,2] <> glob_large_float) and (array_real_pole[1,1] > 0.0) and (array_real_pole[1,2] > 0.0) and ((array_complex_pole[1,1] = glob_large_float) or (array_complex_pole[1,2] = glob_large_float) or (array_complex_pole[1,1] <= 0.0 ) or (array_complex_pole[1,2] <= 0.0)))) then # if number 2 > array_poles[1,1] := array_real_pole[1,1]; > array_poles[1,2] := array_real_pole[1,2]; > found := true; > array_type_pole[1] := 1; > if (glob_display_flag) then # if number 3 > omniout_str(ALWAYS,"Real estimate of pole used"); > fi;# end if 3 > ; > fi;# end if 2 > ; > if ( not found and (((array_real_pole[1,1] = glob_large_float) or (array_real_pole[1,2] = glob_large_float)) and ((array_complex_pole[1,1] = glob_large_float) or (array_complex_pole[1,2] = glob_large_float)))) then # if number 2 > array_poles[1,1] := glob_large_float; > array_poles[1,2] := glob_large_float; > found := true; > array_type_pole[1] := 3; > if (glob_display_flag) then # if number 3 > omniout_str(ALWAYS,"NO POLE"); > fi;# end if 3 > ; > fi;# end if 2 > ; > if ( not found and ((array_real_pole[1,1] < array_complex_pole[1,1]) and (array_real_pole[1,1] > 0.0) and (array_real_pole[1,2] > 0.0))) then # if number 2 > array_poles[1,1] := array_real_pole[1,1]; > array_poles[1,2] := array_real_pole[1,2]; > found := true; > array_type_pole[1] := 1; > if (glob_display_flag) then # if number 3 > omniout_str(ALWAYS,"Real estimate of pole used"); > fi;# end if 3 > ; > fi;# end if 2 > ; > if ( not found and ((array_complex_pole[1,1] <> glob_large_float) and (array_complex_pole[1,2] <> glob_large_float) and (array_complex_pole[1,1] > 0.0) and (array_complex_pole[1,2] > 0.0))) then # if number 2 > array_poles[1,1] := array_complex_pole[1,1]; > array_poles[1,2] := array_complex_pole[1,2]; > array_type_pole[1] := 2; > found := true; > if (glob_display_flag) then # if number 3 > omniout_str(ALWAYS,"Complex estimate of poles used"); > fi;# end if 3 > ; > fi;# end if 2 > ; > if ( not found ) then # if number 2 > array_poles[1,1] := glob_large_float; > array_poles[1,2] := glob_large_float; > array_type_pole[1] := 3; > if (glob_display_flag) then # if number 3 > omniout_str(ALWAYS,"NO POLE"); > fi;# end if 3 > ; > fi;# end if 2 > ; > #BOTTOM WHICH RADII EQ = 1 > array_pole[1] := glob_large_float; > array_pole[2] := glob_large_float; > #TOP WHICH RADIUS EQ = 1 > if (array_pole[1] > array_poles[1,1]) then # if number 2 > array_pole[1] := array_poles[1,1]; > array_pole[2] := array_poles[1,2]; > fi;# end if 2 > ; > #BOTTOM WHICH RADIUS EQ = 1 > #BOTTOM CHECK FOR POLE > display_pole(); > > # End Function number 6 > end; check_for_pole := proc() local cnt, dr1, dr2, ds1, ds2, hdrc, m, n, nr1, nr2, ord_no, rad_c, rcs, rm0, rm1, rm2, rm3, rm4, found; global DEBUGMASSIVE, INFO, ALWAYS, glob_max_terms, DEBUGL, glob_iolevel, glob_iter, glob_small_float, glob_hmin, djd_debug, glob_dump, glob_normmax, glob_relerr, glob_last_good_h, glob_h, glob_not_yet_start_msg, glob_optimal_expect_sec, glob_warned, glob_smallish_float, glob_max_hours, glob_hmin_init, glob_optimal_done, glob_almost_1, days_in_year, sec_in_minute, glob_log10relerr, glob_warned2, glob_max_rel_trunc_err, glob_max_iter, glob_log10_relerr, glob_log10_abserr, glob_dump_analytic, glob_hmax, glob_reached_optimal_h, glob_display_flag, glob_subiter_method, glob_log10abserr, glob_orig_start_sec, glob_optimal_start, glob_large_float, MAX_UNCHANGED, glob_curr_iter_when_opt, glob_optimal_clock_start_sec, glob_abserr, years_in_century, glob_percent_done, glob_unchanged_h_cnt, glob_no_eqs, glob_initial_pass, glob_not_yet_finished, hours_in_day, djd_debug2, glob_max_minutes, glob_max_sec, glob_disp_incr, glob_clock_start_sec, glob_clock_sec, glob_log10normmin, glob_current_iter, glob_start, glob_max_trunc_err, centuries_in_millinium, min_in_hour, glob_html_log, glob_look_poles, glob_max_opt_iter, array_const_1, array_const_2D0, array_const_0D0, array_const_1D0, array_last_rel_error, array_1st_rel_error, array_pole, array_y_init, array_type_pole, array_m1, array_tmp0, array_tmp1, array_tmp2, array_tmp3, array_tmp4, array_tmp5, array_tmp6, array_tmp7, array_tmp8, array_tmp9, array_y, array_x, array_norms, array_fact_1, array_real_pole, array_poles, array_y_higher_work2, array_complex_pole, array_y_set_initial, array_fact_2, array_y_higher_work, array_y_higher, glob_last; n := glob_max_terms; m := n - 2; while 10 <= m and (omniabs(array_y_higher[1, m]) < glob_small_float or omniabs(array_y_higher[1, m - 1]) < glob_small_float or omniabs(array_y_higher[1, m - 2]) < glob_small_float) do m := m - 1 end do; if 10 < m then rm0 := array_y_higher[1, m]/array_y_higher[1, m - 1]; rm1 := array_y_higher[1, m - 1]/array_y_higher[1, m - 2]; hdrc := convfloat(m - 1)*rm0 - convfloat(m - 2)*rm1; if glob_small_float < omniabs(hdrc) then rcs := glob_h/hdrc; ord_no := convfloat(m - 1)*rm0/hdrc - convfloat(m) + 2.0; array_real_pole[1, 1] := rcs; array_real_pole[1, 2] := ord_no else array_real_pole[1, 1] := glob_large_float; array_real_pole[1, 2] := glob_large_float end if else array_real_pole[1, 1] := glob_large_float; array_real_pole[1, 2] := glob_large_float end if; n := glob_max_terms - 2; cnt := 0; while cnt < 5 and 10 <= n do if glob_small_float < omniabs(array_y_higher[1, n]) then cnt := cnt + 1 else cnt := 0 end if; n := n - 1 end do; m := n + cnt; if m <= 10 then array_complex_pole[1, 1] := glob_large_float; array_complex_pole[1, 2] := glob_large_float elif glob_large_float <= omniabs(array_y_higher[1, m]) or glob_large_float <= omniabs(array_y_higher[1, m - 1]) or glob_large_float <= omniabs(array_y_higher[1, m - 2]) or glob_large_float <= omniabs(array_y_higher[1, m - 3]) or glob_large_float <= omniabs(array_y_higher[1, m - 4]) or glob_large_float <= omniabs(array_y_higher[1, m - 5]) then array_complex_pole[1, 1] := glob_large_float; array_complex_pole[1, 2] := glob_large_float else rm0 := array_y_higher[1, m]/array_y_higher[1, m - 1]; rm1 := array_y_higher[1, m - 1]/array_y_higher[1, m - 2]; rm2 := array_y_higher[1, m - 2]/array_y_higher[1, m - 3]; rm3 := array_y_higher[1, m - 3]/array_y_higher[1, m - 4]; rm4 := array_y_higher[1, m - 4]/array_y_higher[1, m - 5]; nr1 := convfloat(m - 1)*rm0 - 2.0*convfloat(m - 2)*rm1 + convfloat(m - 3)*rm2; nr2 := convfloat(m - 2)*rm1 - 2.0*convfloat(m - 3)*rm2 + convfloat(m - 4)*rm3; dr1 := (-1)*(1.0)/rm1 + 2.0/rm2 - 1.0/rm3; dr2 := (-1)*(1.0)/rm2 + 2.0/rm3 - 1.0/rm4; ds1 := 3.0/rm1 - 8.0/rm2 + 5.0/rm3; ds2 := 3.0/rm2 - 8.0/rm3 + 5.0/rm4; if omniabs(nr1*dr2 - nr2*dr1) <= glob_small_float or omniabs(dr1) <= glob_small_float then array_complex_pole[1, 1] := glob_large_float; array_complex_pole[1, 2] := glob_large_float else if glob_small_float < omniabs(nr1*dr2 - nr2*dr1) then rcs := (ds1*dr2 - ds2*dr1 + dr1*dr2)/(nr1*dr2 - nr2*dr1); ord_no := (rcs*nr1 - ds1)/(2.0*dr1) - convfloat(m)/2.0; if glob_small_float < omniabs(rcs) then if 0. < rcs then rad_c := sqrt(rcs)*glob_h else rad_c := glob_large_float end if else rad_c := glob_large_float; ord_no := glob_large_float end if else rad_c := glob_large_float; ord_no := glob_large_float end if end if; array_complex_pole[1, 1] := rad_c; array_complex_pole[1, 2] := ord_no end if; found := false; if not found and (array_real_pole[1, 1] = glob_large_float or array_real_pole[1, 2] = glob_large_float) and array_complex_pole[1, 1] <> glob_large_float and array_complex_pole[1, 2] <> glob_large_float and 0. < array_complex_pole[1, 1] and 0. < array_complex_pole[1, 2] then array_poles[1, 1] := array_complex_pole[1, 1]; array_poles[1, 2] := array_complex_pole[1, 2]; found := true; array_type_pole[1] := 2; if glob_display_flag then omniout_str(ALWAYS, "Complex estimate of poles used") end if end if; if not found and array_real_pole[1, 1] <> glob_large_float and array_real_pole[1, 2] <> glob_large_float and 0. < array_real_pole[1, 1] and 0. < array_real_pole[1, 2] and ( array_complex_pole[1, 1] = glob_large_float or array_complex_pole[1, 2] = glob_large_float or array_complex_pole[1, 1] <= 0. or array_complex_pole[1, 2] <= 0.) then array_poles[1, 1] := array_real_pole[1, 1]; array_poles[1, 2] := array_real_pole[1, 2]; found := true; array_type_pole[1] := 1; if glob_display_flag then omniout_str(ALWAYS, "Real estimate of pole used") end if end if; if not found and (array_real_pole[1, 1] = glob_large_float or array_real_pole[1, 2] = glob_large_float) and ( array_complex_pole[1, 1] = glob_large_float or array_complex_pole[1, 2] = glob_large_float) then array_poles[1, 1] := glob_large_float; array_poles[1, 2] := glob_large_float; found := true; array_type_pole[1] := 3; if glob_display_flag then omniout_str(ALWAYS, "NO POLE") end if end if; if not found and array_real_pole[1, 1] < array_complex_pole[1, 1] and 0. < array_real_pole[1, 1] and 0. < array_real_pole[1, 2] then array_poles[1, 1] := array_real_pole[1, 1]; array_poles[1, 2] := array_real_pole[1, 2]; found := true; array_type_pole[1] := 1; if glob_display_flag then omniout_str(ALWAYS, "Real estimate of pole used") end if end if; if not found and array_complex_pole[1, 1] <> glob_large_float and array_complex_pole[1, 2] <> glob_large_float and 0. < array_complex_pole[1, 1] and 0. < array_complex_pole[1, 2] then array_poles[1, 1] := array_complex_pole[1, 1]; array_poles[1, 2] := array_complex_pole[1, 2]; array_type_pole[1] := 2; found := true; if glob_display_flag then omniout_str(ALWAYS, "Complex estimate of poles used") end if end if; if not found then array_poles[1, 1] := glob_large_float; array_poles[1, 2] := glob_large_float; array_type_pole[1] := 3; if glob_display_flag then omniout_str(ALWAYS, "NO POLE") end if end if; array_pole[1] := glob_large_float; array_pole[2] := glob_large_float; if array_poles[1, 1] < array_pole[1] then array_pole[1] := array_poles[1, 1]; array_pole[2] := array_poles[1, 2] end if; display_pole() end proc > # Begin Function number 7 > get_norms := proc() > global > DEBUGMASSIVE, > INFO, > ALWAYS, > glob_max_terms, > DEBUGL, > glob_iolevel, > #Top Generate Globals Decl > glob_iter, > glob_small_float, > glob_hmin, > djd_debug, > glob_dump, > glob_normmax, > glob_relerr, > glob_last_good_h, > glob_h, > glob_not_yet_start_msg, > glob_optimal_expect_sec, > glob_warned, > glob_smallish_float, > glob_max_hours, > glob_hmin_init, > glob_optimal_done, > glob_almost_1, > days_in_year, > sec_in_minute, > glob_log10relerr, > glob_warned2, > glob_max_rel_trunc_err, > glob_max_iter, > glob_log10_relerr, > glob_log10_abserr, > glob_dump_analytic, > glob_hmax, > glob_reached_optimal_h, > glob_display_flag, > glob_subiter_method, > glob_log10abserr, > glob_orig_start_sec, > glob_optimal_start, > glob_large_float, > MAX_UNCHANGED, > glob_curr_iter_when_opt, > glob_optimal_clock_start_sec, > glob_abserr, > years_in_century, > glob_percent_done, > glob_unchanged_h_cnt, > glob_no_eqs, > glob_initial_pass, > glob_not_yet_finished, > hours_in_day, > djd_debug2, > glob_max_minutes, > glob_max_sec, > glob_disp_incr, > glob_clock_start_sec, > glob_clock_sec, > glob_log10normmin, > glob_current_iter, > glob_start, > glob_max_trunc_err, > centuries_in_millinium, > min_in_hour, > glob_html_log, > glob_look_poles, > glob_max_opt_iter, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_1, > array_const_2D0, > array_const_0D0, > array_const_1D0, > #END CONST > array_last_rel_error, > array_1st_rel_error, > array_pole, > array_y_init, > array_type_pole, > array_m1, > array_tmp0, > array_tmp1, > array_tmp2, > array_tmp3, > array_tmp4, > array_tmp5, > array_tmp6, > array_tmp7, > array_tmp8, > array_tmp9, > array_y, > array_x, > array_norms, > array_fact_1, > array_real_pole, > array_poles, > array_y_higher_work2, > array_complex_pole, > array_y_set_initial, > array_fact_2, > array_y_higher_work, > array_y_higher, > glob_last; > > local iii; > > > > if ( not glob_initial_pass) then # if number 2 > iii := 1; > while (iii <= glob_max_terms) do # do number 2 > array_norms[iii] := 0.0; > iii := iii + 1; > od;# end do number 2 > ; > #TOP GET NORMS > iii := 1; > while (iii <= glob_max_terms) do # do number 2 > if (omniabs(array_y[iii]) > array_norms[iii]) then # if number 3 > array_norms[iii] := omniabs(array_y[iii]); > fi;# end if 3 > ; > iii := iii + 1; > od;# end do number 2 > #BOTTOM GET NORMS > ; > fi;# end if 2 > ; > > # End Function number 7 > end; get_norms := proc() local iii; global DEBUGMASSIVE, INFO, ALWAYS, glob_max_terms, DEBUGL, glob_iolevel, glob_iter, glob_small_float, glob_hmin, djd_debug, glob_dump, glob_normmax, glob_relerr, glob_last_good_h, glob_h, glob_not_yet_start_msg, glob_optimal_expect_sec, glob_warned, glob_smallish_float, glob_max_hours, glob_hmin_init, glob_optimal_done, glob_almost_1, days_in_year, sec_in_minute, glob_log10relerr, glob_warned2, glob_max_rel_trunc_err, glob_max_iter, glob_log10_relerr, glob_log10_abserr, glob_dump_analytic, glob_hmax, glob_reached_optimal_h, glob_display_flag, glob_subiter_method, glob_log10abserr, glob_orig_start_sec, glob_optimal_start, glob_large_float, MAX_UNCHANGED, glob_curr_iter_when_opt, glob_optimal_clock_start_sec, glob_abserr, years_in_century, glob_percent_done, glob_unchanged_h_cnt, glob_no_eqs, glob_initial_pass, glob_not_yet_finished, hours_in_day, djd_debug2, glob_max_minutes, glob_max_sec, glob_disp_incr, glob_clock_start_sec, glob_clock_sec, glob_log10normmin, glob_current_iter, glob_start, glob_max_trunc_err, centuries_in_millinium, min_in_hour, glob_html_log, glob_look_poles, glob_max_opt_iter, array_const_1, array_const_2D0, array_const_0D0, array_const_1D0, array_last_rel_error, array_1st_rel_error, array_pole, array_y_init, array_type_pole, array_m1, array_tmp0, array_tmp1, array_tmp2, array_tmp3, array_tmp4, array_tmp5, array_tmp6, array_tmp7, array_tmp8, array_tmp9, array_y, array_x, array_norms, array_fact_1, array_real_pole, array_poles, array_y_higher_work2, array_complex_pole, array_y_set_initial, array_fact_2, array_y_higher_work, array_y_higher, glob_last; if not glob_initial_pass then iii := 1; while iii <= glob_max_terms do array_norms[iii] := 0.; iii := iii + 1 end do; iii := 1; while iii <= glob_max_terms do if array_norms[iii] < omniabs(array_y[iii]) then array_norms[iii] := omniabs(array_y[iii]) end if; iii := iii + 1 end do end if end proc > # Begin Function number 8 > atomall := proc() > global > DEBUGMASSIVE, > INFO, > ALWAYS, > glob_max_terms, > DEBUGL, > glob_iolevel, > #Top Generate Globals Decl > glob_iter, > glob_small_float, > glob_hmin, > djd_debug, > glob_dump, > glob_normmax, > glob_relerr, > glob_last_good_h, > glob_h, > glob_not_yet_start_msg, > glob_optimal_expect_sec, > glob_warned, > glob_smallish_float, > glob_max_hours, > glob_hmin_init, > glob_optimal_done, > glob_almost_1, > days_in_year, > sec_in_minute, > glob_log10relerr, > glob_warned2, > glob_max_rel_trunc_err, > glob_max_iter, > glob_log10_relerr, > glob_log10_abserr, > glob_dump_analytic, > glob_hmax, > glob_reached_optimal_h, > glob_display_flag, > glob_subiter_method, > glob_log10abserr, > glob_orig_start_sec, > glob_optimal_start, > glob_large_float, > MAX_UNCHANGED, > glob_curr_iter_when_opt, > glob_optimal_clock_start_sec, > glob_abserr, > years_in_century, > glob_percent_done, > glob_unchanged_h_cnt, > glob_no_eqs, > glob_initial_pass, > glob_not_yet_finished, > hours_in_day, > djd_debug2, > glob_max_minutes, > glob_max_sec, > glob_disp_incr, > glob_clock_start_sec, > glob_clock_sec, > glob_log10normmin, > glob_current_iter, > glob_start, > glob_max_trunc_err, > centuries_in_millinium, > min_in_hour, > glob_html_log, > glob_look_poles, > glob_max_opt_iter, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_1, > array_const_2D0, > array_const_0D0, > array_const_1D0, > #END CONST > array_last_rel_error, > array_1st_rel_error, > array_pole, > array_y_init, > array_type_pole, > array_m1, > array_tmp0, > array_tmp1, > array_tmp2, > array_tmp3, > array_tmp4, > array_tmp5, > array_tmp6, > array_tmp7, > array_tmp8, > array_tmp9, > array_y, > array_x, > array_norms, > array_fact_1, > array_real_pole, > array_poles, > array_y_higher_work2, > array_complex_pole, > array_y_set_initial, > array_fact_2, > array_y_higher_work, > array_y_higher, > glob_last; > > local kkk, order_d, adj2, temporary, term; > > > > > > #TOP ATOMALL > #END OUTFILE1 > #BEGIN ATOMHDR1 > #emit pre mult FULL CONST $eq_no = 1 i = 1 > array_tmp1[1] := array_m1[1] * array_const_2D0[1]; > #emit pre mult FULL LINEAR $eq_no = 1 i = 1 > #emit pre mult LINEAR - FULL $eq_no = 1 i = 1 > array_tmp2[1] := array_tmp1[1] * array_x[1]; > #emit pre mult LINEAR - LINEAR $eq_no = 1 i = 1 > array_tmp3[1] := array_x[1] * array_x[1]; > #emit pre add FULL - CONST $eq_no = 1 i = 1 > array_tmp4[1] := array_tmp3[1] + array_const_1D0[1]; > #emit pre div FULL - FULL $eq_no = 1 i = 1 > array_tmp5[1] := (array_tmp2[1] / (array_tmp4[1])); > #emit pre mult LINEAR - LINEAR $eq_no = 1 i = 1 > array_tmp6[1] := array_x[1] * array_x[1]; > #emit pre add FULL - CONST $eq_no = 1 i = 1 > array_tmp7[1] := array_tmp6[1] + array_const_1D0[1]; > #emit pre div FULL - FULL $eq_no = 1 i = 1 > array_tmp8[1] := (array_tmp5[1] / (array_tmp7[1])); > #emit pre add CONST FULL $eq_no = 1 i = 1 > array_tmp9[1] := array_const_0D0[1] + array_tmp8[1]; > #emit pre assign xxx $eq_no = 1 i = 1 $min_hdrs = 5 > if ( not array_y_set_initial[1,2]) then # if number 1 > if (1 <= glob_max_terms) then # if number 2 > temporary := array_tmp9[1] * expt(glob_h , (1)) * factorial_3(0,1); > array_y[2] := temporary; > array_y_higher[1,2] := temporary; > temporary := temporary / glob_h * (2.0); > array_y_higher[2,1] := temporary > ; > fi;# end if 2 > ; > fi;# end if 1 > ; > kkk := 2; > #END ATOMHDR1 > #BEGIN ATOMHDR2 > #emit pre mult FULL CONST $eq_no = 1 i = 2 > array_tmp1[2] := array_m1[2] * array_const_2D0[1]; > #emit pre mult LINEAR FULL $eq_no = 1 i = 2 > array_tmp2[2] := array_tmp1[2] * array_x[kkk - 1] + array_tmp1[1] * array_x[kkk]; > #emit pre mult LINEAR - LINEAR $eq_no = 1 i = 2 > array_tmp3[2] := array_x[1] * array_x[2] + array_x[2] * array_x[1]; > #emit pre add FULL CONST $eq_no = 1 i = 2 > array_tmp4[2] := array_tmp3[2]; > #emit pre div FULL - FULL $eq_no = 1 i = 2 > array_tmp5[2] := ((array_tmp2[2] - ats(2,array_tmp4,array_tmp5,2))/array_tmp4[1]); > #emit pre mult LINEAR - LINEAR $eq_no = 1 i = 2 > array_tmp6[2] := array_x[1] * array_x[2] + array_x[2] * array_x[1]; > #emit pre add FULL CONST $eq_no = 1 i = 2 > array_tmp7[2] := array_tmp6[2]; > #emit pre div FULL - FULL $eq_no = 1 i = 2 > array_tmp8[2] := ((array_tmp5[2] - ats(2,array_tmp7,array_tmp8,2))/array_tmp7[1]); > #emit pre add CONST FULL $eq_no = 1 i = 2 > array_tmp9[2] := array_tmp8[2]; > #emit pre assign xxx $eq_no = 1 i = 2 $min_hdrs = 5 > if ( not array_y_set_initial[1,3]) then # if number 1 > if (2 <= glob_max_terms) then # if number 2 > temporary := array_tmp9[2] * expt(glob_h , (1)) * factorial_3(1,2); > array_y[3] := temporary; > array_y_higher[1,3] := temporary; > temporary := temporary / glob_h * (2.0); > array_y_higher[2,2] := temporary > ; > fi;# end if 2 > ; > fi;# end if 1 > ; > kkk := 3; > #END ATOMHDR2 > #BEGIN ATOMHDR3 > #emit pre mult FULL CONST $eq_no = 1 i = 3 > array_tmp1[3] := array_m1[3] * array_const_2D0[1]; > #emit pre mult LINEAR FULL $eq_no = 1 i = 3 > array_tmp2[3] := array_tmp1[2] * array_x[kkk - 1] + array_tmp1[1] * array_x[kkk]; > #emit pre mult LINEAR - LINEAR $eq_no = 1 i = 3 > array_tmp3[3] := array_x[2] * array_x[2]; > #emit pre add FULL CONST $eq_no = 1 i = 3 > array_tmp4[3] := array_tmp3[3]; > #emit pre div FULL - FULL $eq_no = 1 i = 3 > array_tmp5[3] := ((array_tmp2[3] - ats(3,array_tmp4,array_tmp5,2))/array_tmp4[1]); > #emit pre mult LINEAR - LINEAR $eq_no = 1 i = 3 > array_tmp6[3] := array_x[2] * array_x[2]; > #emit pre add FULL CONST $eq_no = 1 i = 3 > array_tmp7[3] := array_tmp6[3]; > #emit pre div FULL - FULL $eq_no = 1 i = 3 > array_tmp8[3] := ((array_tmp5[3] - ats(3,array_tmp7,array_tmp8,2))/array_tmp7[1]); > #emit pre add CONST FULL $eq_no = 1 i = 3 > array_tmp9[3] := array_tmp8[3]; > #emit pre assign xxx $eq_no = 1 i = 3 $min_hdrs = 5 > if ( not array_y_set_initial[1,4]) then # if number 1 > if (3 <= glob_max_terms) then # if number 2 > temporary := array_tmp9[3] * expt(glob_h , (1)) * factorial_3(2,3); > array_y[4] := temporary; > array_y_higher[1,4] := temporary; > temporary := temporary / glob_h * (2.0); > array_y_higher[2,3] := temporary > ; > fi;# end if 2 > ; > fi;# end if 1 > ; > kkk := 4; > #END ATOMHDR3 > #BEGIN ATOMHDR4 > #emit pre mult FULL CONST $eq_no = 1 i = 4 > array_tmp1[4] := array_m1[4] * array_const_2D0[1]; > #emit pre mult LINEAR FULL $eq_no = 1 i = 4 > array_tmp2[4] := array_tmp1[2] * array_x[kkk - 1] + array_tmp1[1] * array_x[kkk]; > #emit pre add FULL CONST $eq_no = 1 i = 4 > array_tmp4[4] := array_tmp3[4]; > #emit pre div FULL - FULL $eq_no = 1 i = 4 > array_tmp5[4] := ((array_tmp2[4] - ats(4,array_tmp4,array_tmp5,2))/array_tmp4[1]); > #emit pre add FULL CONST $eq_no = 1 i = 4 > array_tmp7[4] := array_tmp6[4]; > #emit pre div FULL - FULL $eq_no = 1 i = 4 > array_tmp8[4] := ((array_tmp5[4] - ats(4,array_tmp7,array_tmp8,2))/array_tmp7[1]); > #emit pre add CONST FULL $eq_no = 1 i = 4 > array_tmp9[4] := array_tmp8[4]; > #emit pre assign xxx $eq_no = 1 i = 4 $min_hdrs = 5 > if ( not array_y_set_initial[1,5]) then # if number 1 > if (4 <= glob_max_terms) then # if number 2 > temporary := array_tmp9[4] * expt(glob_h , (1)) * factorial_3(3,4); > array_y[5] := temporary; > array_y_higher[1,5] := temporary; > temporary := temporary / glob_h * (2.0); > array_y_higher[2,4] := temporary > ; > fi;# end if 2 > ; > fi;# end if 1 > ; > kkk := 5; > #END ATOMHDR4 > #BEGIN ATOMHDR5 > #emit pre mult FULL CONST $eq_no = 1 i = 5 > array_tmp1[5] := array_m1[5] * array_const_2D0[1]; > #emit pre mult LINEAR FULL $eq_no = 1 i = 5 > array_tmp2[5] := array_tmp1[2] * array_x[kkk - 1] + array_tmp1[1] * array_x[kkk]; > #emit pre add FULL CONST $eq_no = 1 i = 5 > array_tmp4[5] := array_tmp3[5]; > #emit pre div FULL - FULL $eq_no = 1 i = 5 > array_tmp5[5] := ((array_tmp2[5] - ats(5,array_tmp4,array_tmp5,2))/array_tmp4[1]); > #emit pre add FULL CONST $eq_no = 1 i = 5 > array_tmp7[5] := array_tmp6[5]; > #emit pre div FULL - FULL $eq_no = 1 i = 5 > array_tmp8[5] := ((array_tmp5[5] - ats(5,array_tmp7,array_tmp8,2))/array_tmp7[1]); > #emit pre add CONST FULL $eq_no = 1 i = 5 > array_tmp9[5] := array_tmp8[5]; > #emit pre assign xxx $eq_no = 1 i = 5 $min_hdrs = 5 > if ( not array_y_set_initial[1,6]) then # if number 1 > if (5 <= glob_max_terms) then # if number 2 > temporary := array_tmp9[5] * expt(glob_h , (1)) * factorial_3(4,5); > array_y[6] := temporary; > array_y_higher[1,6] := temporary; > temporary := temporary / glob_h * (2.0); > array_y_higher[2,5] := temporary > ; > fi;# end if 2 > ; > fi;# end if 1 > ; > kkk := 6; > #END ATOMHDR5 > #BEGIN OUTFILE3 > #Top Atomall While Loop-- outfile3 > while (kkk <= glob_max_terms) do # do number 1 > #END OUTFILE3 > #BEGIN OUTFILE4 > #emit mult FULL CONST $eq_no = 1 i = 1 > array_tmp1[kkk] := array_m1[kkk] * array_const_2D0[1]; > #emit mult FULL LINEAR $eq_no = 1 i = 1 > array_tmp2[kkk] := array_tmp1[kkk-1] * array_x[2] + array_tmp1[kkk] * array_x[1]; > #emit mult LINEAR - LINEAR $eq_no = 1 i = 1 > #emit FULL - NOT FULL add $eq_no = 1 > array_tmp4[kkk] := array_tmp3[kkk]; > #emit div FULL FULL $eq_no = 1 > array_tmp5[kkk] := ((array_tmp2[kkk] - ats(kkk,array_tmp4,array_tmp5,2))/array_tmp4[1]); > #emit mult LINEAR - LINEAR $eq_no = 1 i = 1 > #emit FULL - NOT FULL add $eq_no = 1 > array_tmp7[kkk] := array_tmp6[kkk]; > #emit div FULL FULL $eq_no = 1 > array_tmp8[kkk] := ((array_tmp5[kkk] - ats(kkk,array_tmp7,array_tmp8,2))/array_tmp7[1]); > #emit NOT FULL - FULL add $eq_no = 1 > array_tmp9[kkk] := array_tmp8[kkk]; > #emit assign $eq_no = 1 > order_d := 1; > if (kkk + order_d + 1 <= glob_max_terms) then # if number 1 > if ( not array_y_set_initial[1,kkk + order_d]) then # if number 2 > temporary := array_tmp9[kkk] * expt(glob_h , (order_d)) / factorial_3((kkk - 1),(kkk + order_d - 1)); > array_y[kkk + order_d] := temporary; > array_y_higher[1,kkk + order_d] := temporary; > term := kkk + order_d - 1; > adj2 := 2; > while ((adj2 <= order_d + 1) and (term >= 1)) do # do number 2 > temporary := temporary / glob_h * convfp(adj2); > array_y_higher[adj2,term] := temporary; > adj2 := adj2 + 1; > term := term - 1; > od;# end do number 2 > fi;# end if 2 > fi;# end if 1 > ; > kkk := kkk + 1; > od;# end do number 1 > ; > #BOTTOM ATOMALL > #END OUTFILE4 > #BEGIN OUTFILE5 > > #BOTTOM ATOMALL ??? > # End Function number 8 > end; atomall := proc() local kkk, order_d, adj2, temporary, term; global DEBUGMASSIVE, INFO, ALWAYS, glob_max_terms, DEBUGL, glob_iolevel, glob_iter, glob_small_float, glob_hmin, djd_debug, glob_dump, glob_normmax, glob_relerr, glob_last_good_h, glob_h, glob_not_yet_start_msg, glob_optimal_expect_sec, glob_warned, glob_smallish_float, glob_max_hours, glob_hmin_init, glob_optimal_done, glob_almost_1, days_in_year, sec_in_minute, glob_log10relerr, glob_warned2, glob_max_rel_trunc_err, glob_max_iter, glob_log10_relerr, glob_log10_abserr, glob_dump_analytic, glob_hmax, glob_reached_optimal_h, glob_display_flag, glob_subiter_method, glob_log10abserr, glob_orig_start_sec, glob_optimal_start, glob_large_float, MAX_UNCHANGED, glob_curr_iter_when_opt, glob_optimal_clock_start_sec, glob_abserr, years_in_century, glob_percent_done, glob_unchanged_h_cnt, glob_no_eqs, glob_initial_pass, glob_not_yet_finished, hours_in_day, djd_debug2, glob_max_minutes, glob_max_sec, glob_disp_incr, glob_clock_start_sec, glob_clock_sec, glob_log10normmin, glob_current_iter, glob_start, glob_max_trunc_err, centuries_in_millinium, min_in_hour, glob_html_log, glob_look_poles, glob_max_opt_iter, array_const_1, array_const_2D0, array_const_0D0, array_const_1D0, array_last_rel_error, array_1st_rel_error, array_pole, array_y_init, array_type_pole, array_m1, array_tmp0, array_tmp1, array_tmp2, array_tmp3, array_tmp4, array_tmp5, array_tmp6, array_tmp7, array_tmp8, array_tmp9, array_y, array_x, array_norms, array_fact_1, array_real_pole, array_poles, array_y_higher_work2, array_complex_pole, array_y_set_initial, array_fact_2, array_y_higher_work, array_y_higher, glob_last; array_tmp1[1] := array_m1[1]*array_const_2D0[1]; array_tmp2[1] := array_tmp1[1]*array_x[1]; array_tmp3[1] := array_x[1]*array_x[1]; array_tmp4[1] := array_tmp3[1] + array_const_1D0[1]; array_tmp5[1] := array_tmp2[1]/array_tmp4[1]; array_tmp6[1] := array_x[1]*array_x[1]; array_tmp7[1] := array_tmp6[1] + array_const_1D0[1]; array_tmp8[1] := array_tmp5[1]/array_tmp7[1]; array_tmp9[1] := array_const_0D0[1] + array_tmp8[1]; if not array_y_set_initial[1, 2] then if 1 <= glob_max_terms then temporary := array_tmp9[1]*expt(glob_h, 1)*factorial_3(0, 1); array_y[2] := temporary; array_y_higher[1, 2] := temporary; temporary := temporary*2.0/glob_h; array_y_higher[2, 1] := temporary end if end if; kkk := 2; array_tmp1[2] := array_m1[2]*array_const_2D0[1]; array_tmp2[2] := array_tmp1[2]*array_x[kkk - 1] + array_tmp1[1]*array_x[kkk]; array_tmp3[2] := 2*array_x[1]*array_x[2]; array_tmp4[2] := array_tmp3[2]; array_tmp5[2] := (array_tmp2[2] - ats(2, array_tmp4, array_tmp5, 2))/array_tmp4[1]; array_tmp6[2] := 2*array_x[1]*array_x[2]; array_tmp7[2] := array_tmp6[2]; array_tmp8[2] := (array_tmp5[2] - ats(2, array_tmp7, array_tmp8, 2))/array_tmp7[1]; array_tmp9[2] := array_tmp8[2]; if not array_y_set_initial[1, 3] then if 2 <= glob_max_terms then temporary := array_tmp9[2]*expt(glob_h, 1)*factorial_3(1, 2); array_y[3] := temporary; array_y_higher[1, 3] := temporary; temporary := temporary*2.0/glob_h; array_y_higher[2, 2] := temporary end if end if; kkk := 3; array_tmp1[3] := array_m1[3]*array_const_2D0[1]; array_tmp2[3] := array_tmp1[2]*array_x[kkk - 1] + array_tmp1[1]*array_x[kkk]; array_tmp3[3] := array_x[2]*array_x[2]; array_tmp4[3] := array_tmp3[3]; array_tmp5[3] := (array_tmp2[3] - ats(3, array_tmp4, array_tmp5, 2))/array_tmp4[1]; array_tmp6[3] := array_x[2]*array_x[2]; array_tmp7[3] := array_tmp6[3]; array_tmp8[3] := (array_tmp5[3] - ats(3, array_tmp7, array_tmp8, 2))/array_tmp7[1]; array_tmp9[3] := array_tmp8[3]; if not array_y_set_initial[1, 4] then if 3 <= glob_max_terms then temporary := array_tmp9[3]*expt(glob_h, 1)*factorial_3(2, 3); array_y[4] := temporary; array_y_higher[1, 4] := temporary; temporary := temporary*2.0/glob_h; array_y_higher[2, 3] := temporary end if end if; kkk := 4; array_tmp1[4] := array_m1[4]*array_const_2D0[1]; array_tmp2[4] := array_tmp1[2]*array_x[kkk - 1] + array_tmp1[1]*array_x[kkk]; array_tmp4[4] := array_tmp3[4]; array_tmp5[4] := (array_tmp2[4] - ats(4, array_tmp4, array_tmp5, 2))/array_tmp4[1]; array_tmp7[4] := array_tmp6[4]; array_tmp8[4] := (array_tmp5[4] - ats(4, array_tmp7, array_tmp8, 2))/array_tmp7[1]; array_tmp9[4] := array_tmp8[4]; if not array_y_set_initial[1, 5] then if 4 <= glob_max_terms then temporary := array_tmp9[4]*expt(glob_h, 1)*factorial_3(3, 4); array_y[5] := temporary; array_y_higher[1, 5] := temporary; temporary := temporary*2.0/glob_h; array_y_higher[2, 4] := temporary end if end if; kkk := 5; array_tmp1[5] := array_m1[5]*array_const_2D0[1]; array_tmp2[5] := array_tmp1[2]*array_x[kkk - 1] + array_tmp1[1]*array_x[kkk]; array_tmp4[5] := array_tmp3[5]; array_tmp5[5] := (array_tmp2[5] - ats(5, array_tmp4, array_tmp5, 2))/array_tmp4[1]; array_tmp7[5] := array_tmp6[5]; array_tmp8[5] := (array_tmp5[5] - ats(5, array_tmp7, array_tmp8, 2))/array_tmp7[1]; array_tmp9[5] := array_tmp8[5]; if not array_y_set_initial[1, 6] then if 5 <= glob_max_terms then temporary := array_tmp9[5]*expt(glob_h, 1)*factorial_3(4, 5); array_y[6] := temporary; array_y_higher[1, 6] := temporary; temporary := temporary*2.0/glob_h; array_y_higher[2, 5] := temporary end if end if; kkk := 6; while kkk <= glob_max_terms do array_tmp1[kkk] := array_m1[kkk]*array_const_2D0[1]; array_tmp2[kkk] := array_tmp1[kkk - 1]*array_x[2] + array_tmp1[kkk]*array_x[1]; array_tmp4[kkk] := array_tmp3[kkk]; array_tmp5[kkk] := ( array_tmp2[kkk] - ats(kkk, array_tmp4, array_tmp5, 2))/ array_tmp4[1]; array_tmp7[kkk] := array_tmp6[kkk]; array_tmp8[kkk] := ( array_tmp5[kkk] - ats(kkk, array_tmp7, array_tmp8, 2))/ array_tmp7[1]; array_tmp9[kkk] := array_tmp8[kkk]; order_d := 1; if kkk + order_d + 1 <= glob_max_terms then if not array_y_set_initial[1, kkk + order_d] then temporary := array_tmp9[kkk]*expt(glob_h, order_d)/ factorial_3(kkk - 1, kkk + order_d - 1); array_y[kkk + order_d] := temporary; array_y_higher[1, kkk + order_d] := temporary; term := kkk + order_d - 1; adj2 := 2; while adj2 <= order_d + 1 and 1 <= term do temporary := temporary*convfp(adj2)/glob_h; array_y_higher[adj2, term] := temporary; adj2 := adj2 + 1; term := term - 1 end do end if end if; kkk := kkk + 1 end do end proc > #BEGIN ATS LIBRARY BLOCK > omniout_str := proc(iolevel,str) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > printf("%s\n",str); > fi; > # End Function number 1 > end; omniout_str := proc(iolevel, str) global glob_iolevel; if iolevel <= glob_iolevel then printf("%s\n", str) end if end proc > omniout_str_noeol := proc(iolevel,str) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > printf("%s",str); > fi; > # End Function number 1 > end; omniout_str_noeol := proc(iolevel, str) global glob_iolevel; if iolevel <= glob_iolevel then printf("%s", str) end if end proc > omniout_labstr := proc(iolevel,label,str) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > print(label,str); > fi; > # End Function number 1 > end; omniout_labstr := proc(iolevel, label, str) global glob_iolevel; if iolevel <= glob_iolevel then print(label, str) end if end proc > omniout_float := proc(iolevel,prelabel,prelen,value,vallen,postlabel) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > if vallen = 4 then > printf("%-30s = %-42.4g %s \n",prelabel,value, postlabel); > else > printf("%-30s = %-42.32g %s \n",prelabel,value, postlabel); > fi; > fi; > # End Function number 1 > end; omniout_float := proc(iolevel, prelabel, prelen, value, vallen, postlabel) global glob_iolevel; if iolevel <= glob_iolevel then if vallen = 4 then printf("%-30s = %-42.4g %s \n", prelabel, value, postlabel) else printf("%-30s = %-42.32g %s \n", prelabel, value, postlabel) end if end if end proc > omniout_int := proc(iolevel,prelabel,prelen,value,vallen,postlabel) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > if vallen = 5 then > printf("%-30s = %-32d %s\n",prelabel,value, postlabel); > else > printf("%-30s = %-32d %s \n",prelabel,value, postlabel); > fi; > fi; > # End Function number 1 > end; omniout_int := proc(iolevel, prelabel, prelen, value, vallen, postlabel) global glob_iolevel; if iolevel <= glob_iolevel then if vallen = 5 then printf("%-30s = %-32d %s\n", prelabel, value, postlabel) else printf("%-30s = %-32d %s \n", prelabel, value, postlabel) end if end if end proc > omniout_float_arr := proc(iolevel,prelabel,elemnt,prelen,value,vallen,postlabel) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > print(prelabel,"[",elemnt,"]",value, postlabel); > fi; > # End Function number 1 > end; omniout_float_arr := proc( iolevel, prelabel, elemnt, prelen, value, vallen, postlabel) global glob_iolevel; if iolevel <= glob_iolevel then print(prelabel, "[", elemnt, "]", value, postlabel) end if end proc > dump_series := proc(iolevel,dump_label,series_name, > array_series,numb) > global glob_iolevel; > local i; > if (glob_iolevel >= iolevel) then > i := 1; > while (i <= numb) do > print(dump_label,series_name > ,i,array_series[i]); > i := i + 1; > od; > fi; > # End Function number 1 > end; dump_series := proc(iolevel, dump_label, series_name, array_series, numb) local i; global glob_iolevel; if iolevel <= glob_iolevel then i := 1; while i <= numb do print(dump_label, series_name, i, array_series[i]); i := i + 1 end do end if end proc > dump_series_2 := proc(iolevel,dump_label,series_name2, > array_series2,numb,subnum,array_x) > global glob_iolevel; > local i,sub,ts_term; > if (glob_iolevel >= iolevel) then > sub := 1; > while (sub <= subnum) do > i := 1; > while (i <= numb) do > print(dump_label,series_name2,sub,i,array_series2[sub,i]); > od; > sub := sub + 1; > od; > fi; > # End Function number 1 > end; dump_series_2 := proc( iolevel, dump_label, series_name2, array_series2, numb, subnum, array_x) local i, sub, ts_term; global glob_iolevel; if iolevel <= glob_iolevel then sub := 1; while sub <= subnum do i := 1; while i <= numb do print(dump_label, series_name2, sub, i, array_series2[sub, i]) end do; sub := sub + 1 end do end if end proc > cs_info := proc(iolevel,str) > global glob_iolevel,glob_correct_start_flag,glob_h,glob_reached_optimal_h; > if (glob_iolevel >= iolevel) then > print("cs_info " , str , " glob_correct_start_flag = " , glob_correct_start_flag , "glob_h := " , glob_h , "glob_reached_optimal_h := " , glob_reached_optimal_h) > fi; > # End Function number 1 > end; cs_info := proc(iolevel, str) global glob_iolevel, glob_correct_start_flag, glob_h, glob_reached_optimal_h; if iolevel <= glob_iolevel then print("cs_info ", str, " glob_correct_start_flag = ", glob_correct_start_flag, "glob_h := ", glob_h, "glob_reached_optimal_h := ", glob_reached_optimal_h) end if end proc > # Begin Function number 2 > logitem_time := proc(fd,secs_in) > global centuries_in_millinium, days_in_year, hours_in_day, min_in_hour, sec_in_minute, years_in_century; > local cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int; > secs := (secs_in); > if (secs >= 0.0) then # if number 1 > sec_in_millinium := convfloat(sec_in_minute * min_in_hour * hours_in_day * days_in_year * years_in_century * centuries_in_millinium); > milliniums := convfloat(secs / sec_in_millinium); > millinium_int := floor(milliniums); > centuries := (milliniums - millinium_int)*centuries_in_millinium; > cent_int := floor(centuries); > years := (centuries - cent_int) * years_in_century; > years_int := floor(years); > days := (years - years_int) * days_in_year; > days_int := floor(days); > hours := (days - days_int) * hours_in_day; > hours_int := floor(hours); > minutes := (hours - hours_int) * min_in_hour; > minutes_int := floor(minutes); > seconds := (minutes - minutes_int) * sec_in_minute; > sec_int := floor(seconds); > fprintf(fd,""); > if (millinium_int > 0) then # if number 2 > fprintf(fd,"%d Millinia %d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds",millinium_int,cent_int,years_int,days_int,hours_int,minutes_int,sec_int); > elif (cent_int > 0) then # if number 3 > fprintf(fd,"%d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds",cent_int,years_int,days_int,hours_int,minutes_int,sec_int); > elif (years_int > 0) then # if number 4 > fprintf(fd,"%d Years %d Days %d Hours %d Minutes %d Seconds",years_int,days_int,hours_int,minutes_int,sec_int); > elif (days_int > 0) then # if number 5 > fprintf(fd,"%d Days %d Hours %d Minutes %d Seconds",days_int,hours_int,minutes_int,sec_int); > elif (hours_int > 0) then # if number 6 > fprintf(fd,"%d Hours %d Minutes %d Seconds",hours_int,minutes_int,sec_int); > elif (minutes_int > 0) then # if number 7 > fprintf(fd,"%d Minutes %d Seconds",minutes_int,sec_int); > else > fprintf(fd,"%d Seconds",sec_int); > fi;# end if 7 > else > fprintf(fd,"Unknown"); > fi;# end if 6 > fprintf(fd,""); > # End Function number 2 > end; logitem_time := proc(fd, secs_in) local cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int; global centuries_in_millinium, days_in_year, hours_in_day, min_in_hour, sec_in_minute, years_in_century; secs := secs_in; if 0. <= secs then sec_in_millinium := convfloat(sec_in_minute*min_in_hour* hours_in_day*days_in_year*years_in_century* centuries_in_millinium); milliniums := convfloat(secs/sec_in_millinium); millinium_int := floor(milliniums); centuries := (milliniums - millinium_int)*centuries_in_millinium; cent_int := floor(centuries); years := (centuries - cent_int)*years_in_century; years_int := floor(years); days := (years - years_int)*days_in_year; days_int := floor(days); hours := (days - days_int)*hours_in_day; hours_int := floor(hours); minutes := (hours - hours_int)*min_in_hour; minutes_int := floor(minutes); seconds := (minutes - minutes_int)*sec_in_minute; sec_int := floor(seconds); fprintf(fd, ""); if 0 < millinium_int then fprintf(fd, "%d Millinia %d Centuries %\ d Years %d Days %d Hours %d Minutes %d Seconds", millinium_int, cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < cent_int then fprintf(fd, "%d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds", cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < years_int then fprintf(fd, "%d Years %d Days %d Hours %d Minutes %d Seconds", years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < days_int then fprintf(fd, "%d Days %d Hours %d Minutes %d Seconds", days_int, hours_int, minutes_int, sec_int) elif 0 < hours_int then fprintf(fd, "%d Hours %d Minutes %d Seconds", hours_int, minutes_int, sec_int) elif 0 < minutes_int then fprintf(fd, "%d Minutes %d Seconds", minutes_int, sec_int) else fprintf(fd, "%d Seconds", sec_int) end if else fprintf(fd, "Unknown") end if; fprintf(fd, "") end proc > omniout_timestr := proc (secs_in) > global centuries_in_millinium, days_in_year, hours_in_day, min_in_hour, sec_in_minute, years_in_century; > local cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int; > secs := convfloat(secs_in); > if (secs >= 0.0) then # if number 6 > sec_in_millinium := convfloat(sec_in_minute * min_in_hour * hours_in_day * days_in_year * years_in_century * centuries_in_millinium); > milliniums := convfloat(secs / sec_in_millinium); > millinium_int := floor(milliniums); > centuries := (milliniums - millinium_int)*centuries_in_millinium; > cent_int := floor(centuries); > years := (centuries - cent_int) * years_in_century; > years_int := floor(years); > days := (years - years_int) * days_in_year; > days_int := floor(days); > hours := (days - days_int) * hours_in_day; > hours_int := floor(hours); > minutes := (hours - hours_int) * min_in_hour; > minutes_int := floor(minutes); > seconds := (minutes - minutes_int) * sec_in_minute; > sec_int := floor(seconds); > > if (millinium_int > 0) then # if number 7 > printf(" = %d Millinia %d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds\n",millinium_int,cent_int,years_int,days_int,hours_int,minutes_int,sec_int); > elif (cent_int > 0) then # if number 8 > printf(" = %d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds\n",cent_int,years_int,days_int,hours_int,minutes_int,sec_int); > elif (years_int > 0) then # if number 9 > printf(" = %d Years %d Days %d Hours %d Minutes %d Seconds\n",years_int,days_int,hours_int,minutes_int,sec_int); > elif (days_int > 0) then # if number 10 > printf(" = %d Days %d Hours %d Minutes %d Seconds\n",days_int,hours_int,minutes_int,sec_int); > elif (hours_int > 0) then # if number 11 > printf(" = %d Hours %d Minutes %d Seconds\n",hours_int,minutes_int,sec_int); > elif (minutes_int > 0) then # if number 12 > printf(" = %d Minutes %d Seconds\n",minutes_int,sec_int); > else > printf(" = %d Seconds\n",sec_int); > fi;# end if 12 > else > printf(" Unknown\n"); > fi;# end if 11 > # End Function number 2 > end; omniout_timestr := proc(secs_in) local cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int; global centuries_in_millinium, days_in_year, hours_in_day, min_in_hour, sec_in_minute, years_in_century; secs := convfloat(secs_in); if 0. <= secs then sec_in_millinium := convfloat(sec_in_minute*min_in_hour* hours_in_day*days_in_year*years_in_century* centuries_in_millinium); milliniums := convfloat(secs/sec_in_millinium); millinium_int := floor(milliniums); centuries := (milliniums - millinium_int)*centuries_in_millinium; cent_int := floor(centuries); years := (centuries - cent_int)*years_in_century; years_int := floor(years); days := (years - years_int)*days_in_year; days_int := floor(days); hours := (days - days_int)*hours_in_day; hours_int := floor(hours); minutes := (hours - hours_int)*min_in_hour; minutes_int := floor(minutes); seconds := (minutes - minutes_int)*sec_in_minute; sec_int := floor(seconds); if 0 < millinium_int then printf(" = %d Millinia %d Centuries %d\ Years %d Days %d Hours %d Minutes %d Seconds\n", millinium_int, cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < cent_int then printf(" = %d Centuries %d Years %d Days \ %d Hours %d Minutes %d Seconds\n", cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < years_int then printf( " = %d Years %d Days %d Hours %d Minutes %d Seconds\n", years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < days_int then printf( " = %d Days %d Hours %d Minutes %d Seconds\n", days_int, hours_int, minutes_int, sec_int) elif 0 < hours_int then printf( " = %d Hours %d Minutes %d Seconds\n", hours_int, minutes_int, sec_int) elif 0 < minutes_int then printf(" = %d Minutes %d Seconds\n", minutes_int, sec_int) else printf(" = %d Seconds\n", sec_int) end if else printf(" Unknown\n") end if end proc > # Begin Function number 3 > ats := proc( > mmm_ats,array_a,array_b,jjj_ats) > local iii_ats, lll_ats,ma_ats, ret_ats; > > > > > > ret_ats := 0.0; > if (jjj_ats <= mmm_ats) then # if number 11 > ma_ats := mmm_ats + 1; > iii_ats := jjj_ats; > while (iii_ats <= mmm_ats) do # do number 1 > lll_ats := ma_ats - iii_ats; > ret_ats := ret_ats + array_a[iii_ats]*array_b[lll_ats]; > iii_ats := iii_ats + 1; > od;# end do number 1 > fi;# end if 11 > ; > ret_ats; > > # End Function number 3 > end; ats := proc(mmm_ats, array_a, array_b, jjj_ats) local iii_ats, lll_ats, ma_ats, ret_ats; ret_ats := 0.; if jjj_ats <= mmm_ats then ma_ats := mmm_ats + 1; iii_ats := jjj_ats; while iii_ats <= mmm_ats do lll_ats := ma_ats - iii_ats; ret_ats := ret_ats + array_a[iii_ats]*array_b[lll_ats]; iii_ats := iii_ats + 1 end do end if; ret_ats end proc > # Begin Function number 4 > att := proc( > mmm_att,array_aa,array_bb,jjj_att) > global glob_max_terms; > local al_att, iii_att,lll_att, ma_att, ret_att; > > > > > > ret_att := 0.0; > if (jjj_att <= mmm_att) then # if number 11 > ma_att := mmm_att + 2; > iii_att := jjj_att; > while (iii_att <= mmm_att) do # do number 1 > lll_att := ma_att - iii_att; > al_att := (lll_att - 1); > if (lll_att <= glob_max_terms) then # if number 12 > ret_att := ret_att + array_aa[iii_att]*array_bb[lll_att]* convfp(al_att); > fi;# end if 12 > ; > iii_att := iii_att + 1; > od;# end do number 1 > ; > ret_att := ret_att / convfp(mmm_att) ; > fi;# end if 11 > ; > ret_att; > > # End Function number 4 > end; att := proc(mmm_att, array_aa, array_bb, jjj_att) local al_att, iii_att, lll_att, ma_att, ret_att; global glob_max_terms; ret_att := 0.; if jjj_att <= mmm_att then ma_att := mmm_att + 2; iii_att := jjj_att; while iii_att <= mmm_att do lll_att := ma_att - iii_att; al_att := lll_att - 1; if lll_att <= glob_max_terms then ret_att := ret_att + array_aa[iii_att]*array_bb[lll_att]*convfp(al_att) end if; iii_att := iii_att + 1 end do; ret_att := ret_att/convfp(mmm_att) end if; ret_att end proc > # Begin Function number 5 > display_pole := proc() > global ALWAYS,glob_display_flag, glob_large_float, array_pole; > if ((array_pole[1] <> glob_large_float) and (array_pole[1] > 0.0) and (array_pole[2] <> glob_large_float) and (array_pole[2]> 0.0) and glob_display_flag) then # if number 11 > omniout_float(ALWAYS,"Radius of convergence ",4, array_pole[1],4," "); > omniout_float(ALWAYS,"Order of pole ",4, array_pole[2],4," "); > fi;# end if 11 > # End Function number 5 > end; display_pole := proc() global ALWAYS, glob_display_flag, glob_large_float, array_pole; if array_pole[1] <> glob_large_float and 0. < array_pole[1] and array_pole[2] <> glob_large_float and 0. < array_pole[2] and glob_display_flag then omniout_float(ALWAYS, "Radius of convergence ", 4, array_pole[1], 4, " "); omniout_float(ALWAYS, "Order of pole ", 4, array_pole[2], 4, " ") end if end proc > # Begin Function number 6 > logditto := proc(file) > fprintf(file,""); > fprintf(file,"ditto"); > fprintf(file,""); > # End Function number 6 > end; logditto := proc(file) fprintf(file, ""); fprintf(file, "ditto"); fprintf(file, "") end proc > # Begin Function number 7 > logitem_integer := proc(file,n) > fprintf(file,""); > fprintf(file,"%d",n); > fprintf(file,""); > # End Function number 7 > end; logitem_integer := proc(file, n) fprintf(file, ""); fprintf(file, "%d", n); fprintf(file, "") end proc > # Begin Function number 8 > logitem_str := proc(file,str) > fprintf(file,""); > fprintf(file,str); > fprintf(file,""); > # End Function number 8 > end; logitem_str := proc(file, str) fprintf(file, ""); fprintf(file, str); fprintf(file, "") end proc > # Begin Function number 9 > log_revs := proc(file,revs) > fprintf(file,revs); > # End Function number 9 > end; log_revs := proc(file, revs) fprintf(file, revs) end proc > # Begin Function number 10 > logitem_float := proc(file,x) > fprintf(file,""); > fprintf(file,"%g",x); > fprintf(file,""); > # End Function number 10 > end; logitem_float := proc(file, x) fprintf(file, ""); fprintf(file, "%g", x); fprintf(file, "") end proc > # Begin Function number 11 > logitem_pole := proc(file,pole) > fprintf(file,""); > if (pole = 0) then # if number 11 > fprintf(file,"NA"); > elif (pole = 1) then # if number 12 > fprintf(file,"Real"); > elif (pole = 2) then # if number 13 > fprintf(file,"Complex"); > else > fprintf(file,"No Pole"); > fi;# end if 13 > fprintf(file,""); > # End Function number 11 > end; logitem_pole := proc(file, pole) fprintf(file, ""); if pole = 0 then fprintf(file, "NA") elif pole = 1 then fprintf(file, "Real") elif pole = 2 then fprintf(file, "Complex") else fprintf(file, "No Pole") end if; fprintf(file, "") end proc > # Begin Function number 12 > logstart := proc(file) > fprintf(file,""); > # End Function number 12 > end; logstart := proc(file) fprintf(file, "") end proc > # Begin Function number 13 > logend := proc(file) > fprintf(file,"\n"); > # End Function number 13 > end; logend := proc(file) fprintf(file, "\n") end proc > # Begin Function number 14 > chk_data := proc() > global glob_max_iter,ALWAYS, glob_max_terms; > local errflag; > > > > errflag := false; > > if ((glob_max_terms < 15) or (glob_max_terms > 512)) then # if number 13 > omniout_str(ALWAYS,"Illegal max_terms = -- Using 30"); > glob_max_terms := 30; > fi;# end if 13 > ; > if (glob_max_iter < 2) then # if number 13 > omniout_str(ALWAYS,"Illegal max_iter"); > errflag := true; > fi;# end if 13 > ; > if (errflag) then # if number 13 > > quit; > fi;# end if 13 > > # End Function number 14 > end; chk_data := proc() local errflag; global glob_max_iter, ALWAYS, glob_max_terms; errflag := false; if glob_max_terms < 15 or 512 < glob_max_terms then omniout_str(ALWAYS, "Illegal max_terms = -- Using 30"); glob_max_terms := 30 end if; if glob_max_iter < 2 then omniout_str(ALWAYS, "Illegal max_iter"); errflag := true end if; if errflag then quit end if end proc > # Begin Function number 15 > comp_expect_sec := proc(t_end2,t_start2,t2,clock_sec2) > global glob_small_float; > local ms2, rrr, sec_left, sub1, sub2; > > > > ; > ms2 := clock_sec2; > sub1 := (t_end2-t_start2); > sub2 := (t2-t_start2); > if (sub1 = 0.0) then # if number 13 > sec_left := 0.0; > else > if (sub2 > 0.0) then # if number 14 > rrr := (sub1/sub2); > sec_left := rrr * ms2 - ms2; > else > sec_left := 0.0; > fi;# end if 14 > fi;# end if 13 > ; > sec_left; > > # End Function number 15 > end; comp_expect_sec := proc(t_end2, t_start2, t2, clock_sec2) local ms2, rrr, sec_left, sub1, sub2; global glob_small_float; ms2 := clock_sec2; sub1 := t_end2 - t_start2; sub2 := t2 - t_start2; if sub1 = 0. then sec_left := 0. else if 0. < sub2 then rrr := sub1/sub2; sec_left := rrr*ms2 - ms2 else sec_left := 0. end if end if; sec_left end proc > # Begin Function number 16 > comp_percent := proc(t_end2,t_start2, t2) > global glob_small_float; > local rrr, sub1, sub2; > > > > sub1 := (t_end2-t_start2); > sub2 := (t2-t_start2); > if (sub2 > glob_small_float) then # if number 13 > rrr := (100.0*sub2)/sub1; > else > rrr := 0.0; > fi;# end if 13 > ; > rrr; > > # End Function number 16 > end; comp_percent := proc(t_end2, t_start2, t2) local rrr, sub1, sub2; global glob_small_float; sub1 := t_end2 - t_start2; sub2 := t2 - t_start2; if glob_small_float < sub2 then rrr := 100.0*sub2/sub1 else rrr := 0. end if; rrr end proc > # Begin Function number 17 > factorial_2 := proc(nnn) > local ret; > > > > ret := nnn!; > > # End Function number 17 > end; factorial_2 := proc(nnn) local ret; ret := nnn! end proc > # Begin Function number 18 > factorial_1 := proc(nnn) > global glob_max_terms,array_fact_1; > local ret; > > > > if (nnn <= glob_max_terms) then # if number 13 > if (array_fact_1[nnn] = 0) then # if number 14 > ret := factorial_2(nnn); > array_fact_1[nnn] := ret; > else > ret := array_fact_1[nnn]; > fi;# end if 14 > ; > else > ret := factorial_2(nnn); > fi;# end if 13 > ; > ret; > > # End Function number 18 > end; factorial_1 := proc(nnn) local ret; global glob_max_terms, array_fact_1; if nnn <= glob_max_terms then if array_fact_1[nnn] = 0 then ret := factorial_2(nnn); array_fact_1[nnn] := ret else ret := array_fact_1[nnn] end if else ret := factorial_2(nnn) end if; ret end proc > # Begin Function number 19 > factorial_3 := proc(mmm,nnn) > global glob_max_terms,array_fact_2; > local ret; > > > > if ((nnn <= glob_max_terms) and (mmm <= glob_max_terms)) then # if number 13 > if (array_fact_2[mmm,nnn] = 0) then # if number 14 > ret := factorial_1(mmm)/factorial_1(nnn); > array_fact_2[mmm,nnn] := ret; > else > ret := array_fact_2[mmm,nnn]; > fi;# end if 14 > ; > else > ret := factorial_2(mmm)/factorial_2(nnn); > fi;# end if 13 > ; > ret; > > # End Function number 19 > end; factorial_3 := proc(mmm, nnn) local ret; global glob_max_terms, array_fact_2; if nnn <= glob_max_terms and mmm <= glob_max_terms then if array_fact_2[mmm, nnn] = 0 then ret := factorial_1(mmm)/factorial_1(nnn); array_fact_2[mmm, nnn] := ret else ret := array_fact_2[mmm, nnn] end if else ret := factorial_2(mmm)/factorial_2(nnn) end if; ret end proc > # Begin Function number 20 > convfp := proc(mmm) > (mmm); > > # End Function number 20 > end; convfp := proc(mmm) mmm end proc > # Begin Function number 21 > convfloat := proc(mmm) > (mmm); > > # End Function number 21 > end; convfloat := proc(mmm) mmm end proc > elapsed_time_seconds := proc() > time(); > end; elapsed_time_seconds := proc() time() end proc > > > > > > > > > > > > > > > > > > omniabs := proc(x) > abs(x); > end; omniabs := proc(x) abs(x) end proc > expt := proc(x,y) > (x^y); > end; expt := proc(x, y) x^y end proc > #END ATS LIBRARY BLOCK > #BEGIN USER DEF BLOCK > #BEGIN USER DEF BLOCK > exact_soln_y := proc(x) > return(1.0 / (x * x + 1.0)); > end; exact_soln_y := proc(x) return 1.0/(x*x + 1.0) end proc > > > #END USER DEF BLOCK > #END USER DEF BLOCK > #END OUTFILE5 > # Begin Function number 2 > main := proc() > #BEGIN OUTFIEMAIN > local d1,d2,d3,d4,est_err_2,niii,done_once, > term,ord,order_diff,term_no,html_log_file,iiif,jjjf, > rows,r_order,sub_iter,calc_term,iii,temp_sum,current_iter, > x_start,x_end > ,it, log10norm, max_terms, opt_iter, tmp,subiter; > global > DEBUGMASSIVE, > INFO, > ALWAYS, > glob_max_terms, > DEBUGL, > glob_iolevel, > #Top Generate Globals Decl > glob_iter, > glob_small_float, > glob_hmin, > djd_debug, > glob_dump, > glob_normmax, > glob_relerr, > glob_last_good_h, > glob_h, > glob_not_yet_start_msg, > glob_optimal_expect_sec, > glob_warned, > glob_smallish_float, > glob_max_hours, > glob_hmin_init, > glob_optimal_done, > glob_almost_1, > days_in_year, > sec_in_minute, > glob_log10relerr, > glob_warned2, > glob_max_rel_trunc_err, > glob_max_iter, > glob_log10_relerr, > glob_log10_abserr, > glob_dump_analytic, > glob_hmax, > glob_reached_optimal_h, > glob_display_flag, > glob_subiter_method, > glob_log10abserr, > glob_orig_start_sec, > glob_optimal_start, > glob_large_float, > MAX_UNCHANGED, > glob_curr_iter_when_opt, > glob_optimal_clock_start_sec, > glob_abserr, > years_in_century, > glob_percent_done, > glob_unchanged_h_cnt, > glob_no_eqs, > glob_initial_pass, > glob_not_yet_finished, > hours_in_day, > djd_debug2, > glob_max_minutes, > glob_max_sec, > glob_disp_incr, > glob_clock_start_sec, > glob_clock_sec, > glob_log10normmin, > glob_current_iter, > glob_start, > glob_max_trunc_err, > centuries_in_millinium, > min_in_hour, > glob_html_log, > glob_look_poles, > glob_max_opt_iter, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_1, > array_const_2D0, > array_const_0D0, > array_const_1D0, > #END CONST > array_last_rel_error, > array_1st_rel_error, > array_pole, > array_y_init, > array_type_pole, > array_m1, > array_tmp0, > array_tmp1, > array_tmp2, > array_tmp3, > array_tmp4, > array_tmp5, > array_tmp6, > array_tmp7, > array_tmp8, > array_tmp9, > array_y, > array_x, > array_norms, > array_fact_1, > array_real_pole, > array_poles, > array_y_higher_work2, > array_complex_pole, > array_y_set_initial, > array_fact_2, > array_y_higher_work, > array_y_higher, > glob_last; > glob_last; > ALWAYS := 1; > INFO := 2; > DEBUGL := 3; > DEBUGMASSIVE := 4; > glob_iolevel := INFO; > DEBUGMASSIVE := 4; > INFO := 2; > ALWAYS := 1; > glob_max_terms := 30; > DEBUGL := 3; > glob_iolevel := 5; > glob_iter := 0; > glob_small_float := 0.1e-50; > glob_hmin := 0.00000000001; > djd_debug := true; > glob_dump := false; > glob_normmax := 0.0; > glob_relerr := 0.1e-10; > glob_last_good_h := 0.1; > glob_h := 0.1; > glob_not_yet_start_msg := true; > glob_optimal_expect_sec := 0.1; > glob_warned := false; > glob_smallish_float := 0.1e-100; > glob_max_hours := 0.0; > glob_hmin_init := 0.001; > glob_optimal_done := false; > glob_almost_1 := 0.9990; > days_in_year := 365; > sec_in_minute := 60; > glob_log10relerr := 0.0; > glob_warned2 := false; > glob_max_rel_trunc_err := 0.1e-10; > glob_max_iter := 1000; > glob_log10_relerr := 0.1e-10; > glob_log10_abserr := 0.1e-10; > glob_dump_analytic := false; > glob_hmax := 1.0; > glob_reached_optimal_h := false; > glob_display_flag := true; > glob_subiter_method := 3; > glob_log10abserr := 0.0; > glob_orig_start_sec := 0.0; > glob_optimal_start := 0.0; > glob_large_float := 9.0e100; > MAX_UNCHANGED := 10; > glob_curr_iter_when_opt := 0; > glob_optimal_clock_start_sec := 0.0; > glob_abserr := 0.1e-10; > years_in_century := 100; > glob_percent_done := 0.0; > glob_unchanged_h_cnt := 0; > glob_no_eqs := 0; > glob_initial_pass := true; > glob_not_yet_finished := true; > hours_in_day := 24; > djd_debug2 := true; > glob_max_minutes := 0.0; > glob_max_sec := 10000.0; > glob_disp_incr := 0.1; > glob_clock_start_sec := 0.0; > glob_clock_sec := 0.0; > glob_log10normmin := 0.1; > glob_current_iter := 0; > glob_start := 0; > glob_max_trunc_err := 0.1e-10; > centuries_in_millinium := 10; > min_in_hour := 60; > glob_html_log := true; > glob_look_poles := false; > glob_max_opt_iter := 10; > #Write Set Defaults > glob_orig_start_sec := elapsed_time_seconds(); > MAX_UNCHANGED := 10; > glob_curr_iter_when_opt := 0; > glob_display_flag := true; > glob_no_eqs := 1; > glob_iter := -1; > opt_iter := -1; > glob_max_iter := 50000; > glob_max_hours := 0.0; > glob_max_minutes := 15.0; > omniout_str(ALWAYS,"##############ECHO OF PROBLEM#################"); > omniout_str(ALWAYS,"##############temp/sing4postode.ode#################"); > omniout_str(ALWAYS,"diff ( y , x , 1 ) = m1 * 2.0 * x / (x * x + 1.0) /( x * x + 1.0);"); > omniout_str(ALWAYS,"!"); > omniout_str(ALWAYS,"#BEGIN FIRST INPUT BLOCK"); > omniout_str(ALWAYS,"Digits := 32;"); > omniout_str(ALWAYS,"max_terms := 30;"); > omniout_str(ALWAYS,"!"); > omniout_str(ALWAYS,"#END FIRST INPUT BLOCK"); > omniout_str(ALWAYS,"#BEGIN SECOND INPUT BLOCK"); > omniout_str(ALWAYS,"x_start := -2.0;"); > omniout_str(ALWAYS,"x_end := 1.0;"); > omniout_str(ALWAYS,"array_y_init[0 + 1] := exact_soln_y(x_start);"); > omniout_str(ALWAYS,"glob_h := 0.1;"); > omniout_str(ALWAYS,"glob_look_poles := true;"); > omniout_str(ALWAYS,"glob_max_iter := 50;"); > omniout_str(ALWAYS,"#END SECOND INPUT BLOCK"); > omniout_str(ALWAYS,"#BEGIN OVERRIDE BLOCK"); > omniout_str(ALWAYS,"glob_h := 0.00001 ;"); > omniout_str(ALWAYS,"glob_look_poles := true;"); > omniout_str(ALWAYS,"glob_max_iter := 100;"); > omniout_str(ALWAYS,"glob_max_minutes := 1;"); > omniout_str(ALWAYS,"#END OVERRIDE BLOCK"); > omniout_str(ALWAYS,"!"); > omniout_str(ALWAYS,"#BEGIN USER DEF BLOCK"); > omniout_str(ALWAYS,"exact_soln_y := proc(x)"); > omniout_str(ALWAYS,"return(1.0 / (x * x + 1.0));"); > omniout_str(ALWAYS,"end;"); > omniout_str(ALWAYS,""); > omniout_str(ALWAYS,""); > omniout_str(ALWAYS,"#END USER DEF BLOCK"); > omniout_str(ALWAYS,"#######END OF ECHO OF PROBLEM#################"); > glob_unchanged_h_cnt := 0; > glob_warned := false; > glob_warned2 := false; > glob_small_float := 1.0e-200; > glob_smallish_float := 1.0e-64; > glob_large_float := 1.0e100; > glob_almost_1 := 0.99; > glob_log10_abserr := -8.0; > glob_log10_relerr := -8.0; > glob_hmax := 0.01; > #BEGIN FIRST INPUT BLOCK > #BEGIN FIRST INPUT BLOCK > Digits := 32; > max_terms := 30; > #END FIRST INPUT BLOCK > #START OF INITS AFTER INPUT BLOCK > glob_max_terms := max_terms; > glob_html_log := true; > #END OF INITS AFTER INPUT BLOCK > array_last_rel_error:= Array(0..(max_terms + 1),[]); > array_1st_rel_error:= Array(0..(max_terms + 1),[]); > array_pole:= Array(0..(max_terms + 1),[]); > array_y_init:= Array(0..(max_terms + 1),[]); > array_type_pole:= Array(0..(max_terms + 1),[]); > array_m1:= Array(0..(max_terms + 1),[]); > array_tmp0:= Array(0..(max_terms + 1),[]); > array_tmp1:= Array(0..(max_terms + 1),[]); > array_tmp2:= Array(0..(max_terms + 1),[]); > array_tmp3:= Array(0..(max_terms + 1),[]); > array_tmp4:= Array(0..(max_terms + 1),[]); > array_tmp5:= Array(0..(max_terms + 1),[]); > array_tmp6:= Array(0..(max_terms + 1),[]); > array_tmp7:= Array(0..(max_terms + 1),[]); > array_tmp8:= Array(0..(max_terms + 1),[]); > array_tmp9:= Array(0..(max_terms + 1),[]); > array_y:= Array(0..(max_terms + 1),[]); > array_x:= Array(0..(max_terms + 1),[]); > array_norms:= Array(0..(max_terms + 1),[]); > array_fact_1:= Array(0..(max_terms + 1),[]); > array_real_pole := Array(0..(1+ 1) ,(0..3+ 1),[]); > array_poles := Array(0..(1+ 1) ,(0..3+ 1),[]); > array_y_higher_work2 := Array(0..(2+ 1) ,(0..max_terms+ 1),[]); > array_complex_pole := Array(0..(1+ 1) ,(0..3+ 1),[]); > array_y_set_initial := Array(0..(2+ 1) ,(0..max_terms+ 1),[]); > array_fact_2 := Array(0..(max_terms+ 1) ,(0..max_terms+ 1),[]); > array_y_higher_work := Array(0..(2+ 1) ,(0..max_terms+ 1),[]); > array_y_higher := Array(0..(2+ 1) ,(0..max_terms+ 1),[]); > term := 1; > while (term <= max_terms) do # do number 2 > array_last_rel_error[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_1st_rel_error[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_pole[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_y_init[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_type_pole[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_m1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_tmp0[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_tmp1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_tmp2[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_tmp3[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_tmp4[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_tmp5[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_tmp6[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_tmp7[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_tmp8[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_tmp9[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_y[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_x[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_norms[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while (term <= max_terms) do # do number 2 > array_fact_1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > ord := 1; > while (ord <=1) do # do number 2 > term := 1; > while (term <= 3) do # do number 3 > array_real_pole[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while (ord <=1) do # do number 2 > term := 1; > while (term <= 3) do # do number 3 > array_poles[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while (ord <=2) do # do number 2 > term := 1; > while (term <= max_terms) do # do number 3 > array_y_higher_work2[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while (ord <=1) do # do number 2 > term := 1; > while (term <= 3) do # do number 3 > array_complex_pole[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while (ord <=2) do # do number 2 > term := 1; > while (term <= max_terms) do # do number 3 > array_y_set_initial[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while (ord <=max_terms) do # do number 2 > term := 1; > while (term <= max_terms) do # do number 3 > array_fact_2[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while (ord <=2) do # do number 2 > term := 1; > while (term <= max_terms) do # do number 3 > array_y_higher_work[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while (ord <=2) do # do number 2 > term := 1; > while (term <= max_terms) do # do number 3 > array_y_higher[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > #BEGIN ARRAYS DEFINED AND INITIALIZATED > array_m1 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_m1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp9 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_tmp9[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp8 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_tmp8[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp7 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_tmp7[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp6 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_tmp6[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp5 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_tmp5[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp4 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_tmp4[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp3 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_tmp3[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp2 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_tmp2[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp1 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_tmp1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp0 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_tmp0[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_x := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_x[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_y := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_y[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_1 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_const_1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_1[1] := 1; > array_const_2D0 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_const_2D0[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_2D0[1] := 2.0; > array_const_0D0 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_const_0D0[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_0D0[1] := 0.0; > array_const_1D0 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms + 1) do # do number 2 > array_const_1D0[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_1D0[1] := 1.0; > array_m1 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while (term <= max_terms) do # do number 2 > array_m1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_m1[1] := -1.0; > #END ARRAYS DEFINED AND INITIALIZATED > #Initing Factorial Tables > iiif := 0; > while (iiif <= glob_max_terms) do # do number 2 > jjjf := 0; > while (jjjf <= glob_max_terms) do # do number 3 > array_fact_1[iiif] := 0; > array_fact_2[iiif,jjjf] := 0; > jjjf := jjjf + 1; > od;# end do number 3 > ; > iiif := iiif + 1; > od;# end do number 2 > ; > #Done Initing Factorial Tables > #TOP SECOND INPUT BLOCK > #BEGIN SECOND INPUT BLOCK > #END FIRST INPUT BLOCK > #BEGIN SECOND INPUT BLOCK > x_start := -2.0; > x_end := 1.0; > array_y_init[0 + 1] := exact_soln_y(x_start); > glob_h := 0.1; > glob_look_poles := true; > glob_max_iter := 50; > #END SECOND INPUT BLOCK > #BEGIN OVERRIDE BLOCK > glob_h := 0.00001 ; > glob_look_poles := true; > glob_max_iter := 100; > glob_max_minutes := 1; > #END OVERRIDE BLOCK > #END SECOND INPUT BLOCK > #BEGIN INITS AFTER SECOND INPUT BLOCK > glob_last_good_h := glob_h; > glob_max_terms := max_terms; > glob_max_sec := convfloat(60.0) * convfloat(glob_max_minutes) + convfloat(3600.0) * convfloat(glob_max_hours); > glob_abserr := expt(10.0 , (glob_log10_abserr)); > glob_relerr := expt(10.0 , (glob_log10_relerr)); > chk_data(); > #AFTER INITS AFTER SECOND INPUT BLOCK > array_y_set_initial[1,1] := true; > array_y_set_initial[1,2] := false; > array_y_set_initial[1,3] := false; > array_y_set_initial[1,4] := false; > array_y_set_initial[1,5] := false; > array_y_set_initial[1,6] := false; > array_y_set_initial[1,7] := false; > array_y_set_initial[1,8] := false; > array_y_set_initial[1,9] := false; > array_y_set_initial[1,10] := false; > array_y_set_initial[1,11] := false; > array_y_set_initial[1,12] := false; > array_y_set_initial[1,13] := false; > array_y_set_initial[1,14] := false; > array_y_set_initial[1,15] := false; > array_y_set_initial[1,16] := false; > array_y_set_initial[1,17] := false; > array_y_set_initial[1,18] := false; > array_y_set_initial[1,19] := false; > array_y_set_initial[1,20] := false; > array_y_set_initial[1,21] := false; > array_y_set_initial[1,22] := false; > array_y_set_initial[1,23] := false; > array_y_set_initial[1,24] := false; > array_y_set_initial[1,25] := false; > array_y_set_initial[1,26] := false; > array_y_set_initial[1,27] := false; > array_y_set_initial[1,28] := false; > array_y_set_initial[1,29] := false; > array_y_set_initial[1,30] := false; > if (glob_html_log) then # if number 2 > html_log_file := fopen("html/entry.html",WRITE,TEXT); > fi;# end if 2 > ; > #BEGIN SOLUTION CODE > omniout_str(ALWAYS,"START of Soultion"); > #Start Series -- INITIALIZE FOR SOLUTION > array_x[1] := x_start; > array_x[2] := glob_h; > order_diff := 1; > #Start Series array_y > term_no := 1; > while (term_no <= order_diff) do # do number 2 > array_y[term_no] := array_y_init[term_no] * expt(glob_h , (term_no - 1)) / factorial_1(term_no - 1); > term_no := term_no + 1; > od;# end do number 2 > ; > rows := order_diff; > r_order := 1; > while (r_order <= rows) do # do number 2 > term_no := 1; > while (term_no <= (rows - r_order + 1)) do # do number 3 > it := term_no + r_order - 1; > array_y_higher[r_order,term_no] := array_y_init[it]* expt(glob_h , (term_no - 1)) / ((factorial_1(term_no - 1))); > term_no := term_no + 1; > od;# end do number 3 > ; > r_order := r_order + 1; > od;# end do number 2 > ; > current_iter := 1; > glob_clock_start_sec := elapsed_time_seconds(); > if (omniabs(array_y_higher[1,1]) > glob_small_float) then # if number 2 > tmp := omniabs(array_y_higher[1,1]); > log10norm := (log10(tmp)); > if (log10norm < glob_log10normmin) then # if number 3 > glob_log10normmin := log10norm; > fi;# end if 3 > fi;# end if 2 > ; > display_alot(current_iter) > ; > glob_clock_sec := elapsed_time_seconds(); > glob_current_iter := 0; > glob_iter := 0; > omniout_str(DEBUGL," "); > glob_reached_optimal_h := true; > glob_optimal_clock_start_sec := elapsed_time_seconds(); > while ((glob_current_iter < glob_max_iter) and (array_x[1] <= x_end ) and ((convfloat(glob_clock_sec) - convfloat(glob_orig_start_sec)) < convfloat(glob_max_sec))) do # do number 2 > #left paren 0001C > omniout_str(INFO," "); > omniout_str(INFO,"TOP MAIN SOLVE Loop"); > glob_iter := glob_iter + 1; > glob_clock_sec := elapsed_time_seconds(); > glob_current_iter := glob_current_iter + 1; > atomall(); > if (glob_look_poles) then # if number 2 > #left paren 0004C > check_for_pole(); > fi;# end if 2 > ;#was right paren 0004C > array_x[1] := array_x[1] + glob_h; > array_x[2] := glob_h; > #Jump Series array_y > order_diff := 1; > #START PART 1 SUM AND ADJUST > #START SUM AND ADJUST EQ =1 > #sum_and_adjust array_y > #BEFORE ADJUST SUBSERIES EQ =1 > ord := 2; > calc_term := 1; > #adjust_subseriesarray_y > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_y_higher_work[2,iii] := array_y_higher[2,iii] / expt(glob_h , (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =1 > #BEFORE SUM SUBSERIES EQ =1 > temp_sum := 0.0; > ord := 2; > calc_term := 1; > #sum_subseriesarray_y > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_y_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_y_higher_work2[ord,calc_term] := temp_sum * expt(glob_h , (calc_term - 1)) / (factorial_1(calc_term - 1)); > #AFTER SUM SUBSERIES EQ =1 > #BEFORE ADJUST SUBSERIES EQ =1 > ord := 1; > calc_term := 2; > #adjust_subseriesarray_y > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_y_higher_work[1,iii] := array_y_higher[1,iii] / expt(glob_h , (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =1 > #BEFORE SUM SUBSERIES EQ =1 > temp_sum := 0.0; > ord := 1; > calc_term := 2; > #sum_subseriesarray_y > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_y_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_y_higher_work2[ord,calc_term] := temp_sum * expt(glob_h , (calc_term - 1)) / (factorial_1(calc_term - 1)); > #AFTER SUM SUBSERIES EQ =1 > #BEFORE ADJUST SUBSERIES EQ =1 > ord := 1; > calc_term := 1; > #adjust_subseriesarray_y > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_y_higher_work[1,iii] := array_y_higher[1,iii] / expt(glob_h , (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =1 > #BEFORE SUM SUBSERIES EQ =1 > temp_sum := 0.0; > ord := 1; > calc_term := 1; > #sum_subseriesarray_y > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_y_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_y_higher_work2[ord,calc_term] := temp_sum * expt(glob_h , (calc_term - 1)) / (factorial_1(calc_term - 1)); > #AFTER SUM SUBSERIES EQ =1 > #END SUM AND ADJUST EQ =1 > #END PART 1 > #START PART 2 MOVE TERMS to REGULAR Array > term_no := glob_max_terms; > while (term_no >= 1) do # do number 3 > array_y[term_no] := array_y_higher_work2[1,term_no]; > ord := 1; > while (ord <= order_diff) do # do number 4 > array_y_higher[ord,term_no] := array_y_higher_work2[ord,term_no]; > ord := ord + 1; > od;# end do number 4 > ; > term_no := term_no - 1; > od;# end do number 3 > ; > #END PART 2 HEVE MOVED TERMS to REGULAR Array > display_alot(current_iter) > ; > od;# end do number 2 > ;#right paren 0001C > omniout_str(ALWAYS,"Finished!"); > if (glob_iter >= glob_max_iter) then # if number 2 > omniout_str(ALWAYS,"Maximum Iterations Reached before Solution Completed!"); > fi;# end if 2 > ; > if (elapsed_time_seconds() - convfloat(glob_orig_start_sec) >= convfloat(glob_max_sec )) then # if number 2 > omniout_str(ALWAYS,"Maximum Time Reached before Solution Completed!"); > fi;# end if 2 > ; > glob_clock_sec := elapsed_time_seconds(); > omniout_str(INFO,"diff ( y , x , 1 ) = m1 * 2.0 * x / (x * x + 1.0) /( x * x + 1.0);"); > omniout_int(INFO,"Iterations ",32,glob_iter,4," ") > ; > prog_report(x_start,x_end); > if (glob_html_log) then # if number 2 > logstart(html_log_file); > logitem_str(html_log_file,"2012-08-12T23:53:43-05:00") > ; > logitem_str(html_log_file,"Maple") > ; > logitem_str(html_log_file,"sing4") > ; > logitem_str(html_log_file,"diff ( y , x , 1 ) = m1 * 2.0 * x / (x * x + 1.0) /( x * x + 1.0);") > ; > logitem_float(html_log_file,x_start) > ; > logitem_float(html_log_file,x_end) > ; > logitem_float(html_log_file,array_x[1]) > ; > logitem_float(html_log_file,glob_h) > ; > logitem_integer(html_log_file,Digits) > ; > ; > logitem_integer(html_log_file,glob_max_terms) > ; > logitem_float(html_log_file,array_1st_rel_error[1]) > ; > logitem_float(html_log_file,array_last_rel_error[1]) > ; > logitem_integer(html_log_file,glob_iter) > ; > logitem_pole(html_log_file,array_type_pole[1]) > ; > if (array_type_pole[1] = 1 or array_type_pole[1] = 2) then # if number 3 > logitem_float(html_log_file,array_pole[1]) > ; > logitem_float(html_log_file,array_pole[2]) > ; > 0; > else > logitem_str(html_log_file,"NA") > ; > logitem_str(html_log_file,"NA") > ; > 0; > fi;# end if 3 > ; > logitem_time(html_log_file,convfloat(glob_clock_sec)) > ; > if (glob_percent_done < 100.0) then # if number 3 > logitem_time(html_log_file,convfloat(glob_optimal_expect_sec)) > ; > 0; > else > logitem_str(html_log_file,"Done") > ; > 0; > fi;# end if 3 > ; > log_revs(html_log_file," 119 ") > ; > logitem_str(html_log_file,"sing4 diffeq.mxt") > ; > logitem_str(html_log_file,"sing4 maple results") > ; > logitem_str(html_log_file,"1st test with c++") > ; > logend(html_log_file) > ; > ; > fi;# end if 2 > ; > if (glob_html_log) then # if number 2 > fclose(html_log_file); > fi;# end if 2 > ; > ;; > #END OUTFILEMAIN > > # End Function number 8 > end; main := proc() local d1, d2, d3, d4, est_err_2, niii, done_once, term, ord, order_diff, term_no, html_log_file, iiif, jjjf, rows, r_order, sub_iter, calc_term, iii, temp_sum, current_iter, x_start, x_end, it, log10norm, max_terms, opt_iter, tmp, subiter; global DEBUGMASSIVE, INFO, ALWAYS, glob_max_terms, DEBUGL, glob_iolevel, glob_iter, glob_small_float, glob_hmin, djd_debug, glob_dump, glob_normmax, glob_relerr, glob_last_good_h, glob_h, glob_not_yet_start_msg, glob_optimal_expect_sec, glob_warned, glob_smallish_float, glob_max_hours, glob_hmin_init, glob_optimal_done, glob_almost_1, days_in_year, sec_in_minute, glob_log10relerr, glob_warned2, glob_max_rel_trunc_err, glob_max_iter, glob_log10_relerr, glob_log10_abserr, glob_dump_analytic, glob_hmax, glob_reached_optimal_h, glob_display_flag, glob_subiter_method, glob_log10abserr, glob_orig_start_sec, glob_optimal_start, glob_large_float, MAX_UNCHANGED, glob_curr_iter_when_opt, glob_optimal_clock_start_sec, glob_abserr, years_in_century, glob_percent_done, glob_unchanged_h_cnt, glob_no_eqs, glob_initial_pass, glob_not_yet_finished, hours_in_day, djd_debug2, glob_max_minutes, glob_max_sec, glob_disp_incr, glob_clock_start_sec, glob_clock_sec, glob_log10normmin, glob_current_iter, glob_start, glob_max_trunc_err, centuries_in_millinium, min_in_hour, glob_html_log, glob_look_poles, glob_max_opt_iter, array_const_1, array_const_2D0, array_const_0D0, array_const_1D0, array_last_rel_error, array_1st_rel_error, array_pole, array_y_init, array_type_pole, array_m1, array_tmp0, array_tmp1, array_tmp2, array_tmp3, array_tmp4, array_tmp5, array_tmp6, array_tmp7, array_tmp8, array_tmp9, array_y, array_x, array_norms, array_fact_1, array_real_pole, array_poles, array_y_higher_work2, array_complex_pole, array_y_set_initial, array_fact_2, array_y_higher_work, array_y_higher, glob_last; glob_last; ALWAYS := 1; INFO := 2; DEBUGL := 3; DEBUGMASSIVE := 4; glob_iolevel := INFO; DEBUGMASSIVE := 4; INFO := 2; ALWAYS := 1; glob_max_terms := 30; DEBUGL := 3; glob_iolevel := 5; glob_iter := 0; glob_small_float := 0.1*10^(-50); glob_hmin := 0.1*10^(-10); djd_debug := true; glob_dump := false; glob_normmax := 0.; glob_relerr := 0.1*10^(-10); glob_last_good_h := 0.1; glob_h := 0.1; glob_not_yet_start_msg := true; glob_optimal_expect_sec := 0.1; glob_warned := false; glob_smallish_float := 0.1*10^(-100); glob_max_hours := 0.; glob_hmin_init := 0.001; glob_optimal_done := false; glob_almost_1 := 0.9990; days_in_year := 365; sec_in_minute := 60; glob_log10relerr := 0.; glob_warned2 := false; glob_max_rel_trunc_err := 0.1*10^(-10); glob_max_iter := 1000; glob_log10_relerr := 0.1*10^(-10); glob_log10_abserr := 0.1*10^(-10); glob_dump_analytic := false; glob_hmax := 1.0; glob_reached_optimal_h := false; glob_display_flag := true; glob_subiter_method := 3; glob_log10abserr := 0.; glob_orig_start_sec := 0.; glob_optimal_start := 0.; glob_large_float := 0.90*10^101; MAX_UNCHANGED := 10; glob_curr_iter_when_opt := 0; glob_optimal_clock_start_sec := 0.; glob_abserr := 0.1*10^(-10); years_in_century := 100; glob_percent_done := 0.; glob_unchanged_h_cnt := 0; glob_no_eqs := 0; glob_initial_pass := true; glob_not_yet_finished := true; hours_in_day := 24; djd_debug2 := true; glob_max_minutes := 0.; glob_max_sec := 10000.0; glob_disp_incr := 0.1; glob_clock_start_sec := 0.; glob_clock_sec := 0.; glob_log10normmin := 0.1; glob_current_iter := 0; glob_start := 0; glob_max_trunc_err := 0.1*10^(-10); centuries_in_millinium := 10; min_in_hour := 60; glob_html_log := true; glob_look_poles := false; glob_max_opt_iter := 10; glob_orig_start_sec := elapsed_time_seconds(); MAX_UNCHANGED := 10; glob_curr_iter_when_opt := 0; glob_display_flag := true; glob_no_eqs := 1; glob_iter := -1; opt_iter := -1; glob_max_iter := 50000; glob_max_hours := 0.; glob_max_minutes := 15.0; omniout_str(ALWAYS, "##############ECHO OF PROBLEM#################"); omniout_str(ALWAYS, "##############temp/sing4postode.ode#################"); omniout_str(ALWAYS, "diff ( y , x , 1 ) = m1 * 2.0 * x / (x * x + 1.\ 0) /( x * x + 1.0);"); omniout_str(ALWAYS, "!"); omniout_str(ALWAYS, "#BEGIN FIRST INPUT BLOCK"); omniout_str(ALWAYS, "Digits := 32;"); omniout_str(ALWAYS, "max_terms := 30;"); omniout_str(ALWAYS, "!"); omniout_str(ALWAYS, "#END FIRST INPUT BLOCK"); omniout_str(ALWAYS, "#BEGIN SECOND INPUT BLOCK"); omniout_str(ALWAYS, "x_start := -2.0;"); omniout_str(ALWAYS, "x_end := 1.0;"); omniout_str(ALWAYS, "array_y_init[0 + 1] := exact_soln_y(x_start);"); omniout_str(ALWAYS, "glob_h := 0.1;"); omniout_str(ALWAYS, "glob_look_poles := true;"); omniout_str(ALWAYS, "glob_max_iter := 50;"); omniout_str(ALWAYS, "#END SECOND INPUT BLOCK"); omniout_str(ALWAYS, "#BEGIN OVERRIDE BLOCK"); omniout_str(ALWAYS, "glob_h := 0.00001 ;"); omniout_str(ALWAYS, "glob_look_poles := true;"); omniout_str(ALWAYS, "glob_max_iter := 100;"); omniout_str(ALWAYS, "glob_max_minutes := 1;"); omniout_str(ALWAYS, "#END OVERRIDE BLOCK"); omniout_str(ALWAYS, "!"); omniout_str(ALWAYS, "#BEGIN USER DEF BLOCK"); omniout_str(ALWAYS, "exact_soln_y := proc(x)"); omniout_str(ALWAYS, "return(1.0 / (x * x + 1.0));"); omniout_str(ALWAYS, "end;"); omniout_str(ALWAYS, ""); omniout_str(ALWAYS, ""); omniout_str(ALWAYS, "#END USER DEF BLOCK"); omniout_str(ALWAYS, "#######END OF ECHO OF PROBLEM#################"); glob_unchanged_h_cnt := 0; glob_warned := false; glob_warned2 := false; glob_small_float := 0.10*10^(-199); glob_smallish_float := 0.10*10^(-63); glob_large_float := 0.10*10^101; glob_almost_1 := 0.99; glob_log10_abserr := -8.0; glob_log10_relerr := -8.0; glob_hmax := 0.01; Digits := 32; max_terms := 30; glob_max_terms := max_terms; glob_html_log := true; array_last_rel_error := Array(0 .. max_terms + 1, []); array_1st_rel_error := Array(0 .. max_terms + 1, []); array_pole := Array(0 .. max_terms + 1, []); array_y_init := Array(0 .. max_terms + 1, []); array_type_pole := Array(0 .. max_terms + 1, []); array_m1 := Array(0 .. max_terms + 1, []); array_tmp0 := Array(0 .. max_terms + 1, []); array_tmp1 := Array(0 .. max_terms + 1, []); array_tmp2 := Array(0 .. max_terms + 1, []); array_tmp3 := Array(0 .. max_terms + 1, []); array_tmp4 := Array(0 .. max_terms + 1, []); array_tmp5 := Array(0 .. max_terms + 1, []); array_tmp6 := Array(0 .. max_terms + 1, []); array_tmp7 := Array(0 .. max_terms + 1, []); array_tmp8 := Array(0 .. max_terms + 1, []); array_tmp9 := Array(0 .. max_terms + 1, []); array_y := Array(0 .. max_terms + 1, []); array_x := Array(0 .. max_terms + 1, []); array_norms := Array(0 .. max_terms + 1, []); array_fact_1 := Array(0 .. max_terms + 1, []); array_real_pole := Array(0 .. 2, 0 .. 4, []); array_poles := Array(0 .. 2, 0 .. 4, []); array_y_higher_work2 := Array(0 .. 3, 0 .. max_terms + 1, []); array_complex_pole := Array(0 .. 2, 0 .. 4, []); array_y_set_initial := Array(0 .. 3, 0 .. max_terms + 1, []); array_fact_2 := Array(0 .. max_terms + 1, 0 .. max_terms + 1, []); array_y_higher_work := Array(0 .. 3, 0 .. max_terms + 1, []); array_y_higher := Array(0 .. 3, 0 .. max_terms + 1, []); term := 1; while term <= max_terms do array_last_rel_error[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_1st_rel_error[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_pole[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_y_init[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_type_pole[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_m1[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp0[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp1[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp2[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp3[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp4[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp5[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp6[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp7[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp8[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp9[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_y[term] := 0.; term := term + 1 end do ; term := 1; while term <= max_terms do array_x[term] := 0.; term := term + 1 end do ; term := 1; while term <= max_terms do array_norms[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_fact_1[term] := 0.; term := term + 1 end do; ord := 1; while ord <= 1 do term := 1; while term <= 3 do array_real_pole[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 1 do term := 1; while term <= 3 do array_poles[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 2 do term := 1; while term <= max_terms do array_y_higher_work2[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 1 do term := 1; while term <= 3 do array_complex_pole[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 2 do term := 1; while term <= max_terms do array_y_set_initial[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= max_terms do term := 1; while term <= max_terms do array_fact_2[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 2 do term := 1; while term <= max_terms do array_y_higher_work[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 2 do term := 1; while term <= max_terms do array_y_higher[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; array_m1 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_m1[term] := 0.; term := term + 1 end do; array_tmp9 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp9[term] := 0.; term := term + 1 end do; array_tmp8 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp8[term] := 0.; term := term + 1 end do; array_tmp7 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp7[term] := 0.; term := term + 1 end do; array_tmp6 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp6[term] := 0.; term := term + 1 end do; array_tmp5 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp5[term] := 0.; term := term + 1 end do; array_tmp4 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp4[term] := 0.; term := term + 1 end do; array_tmp3 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp3[term] := 0.; term := term + 1 end do; array_tmp2 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp2[term] := 0.; term := term + 1 end do; array_tmp1 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp1[term] := 0.; term := term + 1 end do; array_tmp0 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp0[term] := 0.; term := term + 1 end do; array_x := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_x[term] := 0.; term := term + 1 end do; array_y := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_y[term] := 0.; term := term + 1 end do; array_const_1 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_const_1[term] := 0.; term := term + 1 end do; array_const_1[1] := 1; array_const_2D0 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_const_2D0[term] := 0.; term := term + 1 end do; array_const_2D0[1] := 2.0; array_const_0D0 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_const_0D0[term] := 0.; term := term + 1 end do; array_const_0D0[1] := 0.; array_const_1D0 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_const_1D0[term] := 0.; term := term + 1 end do; array_const_1D0[1] := 1.0; array_m1 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms do array_m1[term] := 0.; term := term + 1 end do; array_m1[1] := -1.0; iiif := 0; while iiif <= glob_max_terms do jjjf := 0; while jjjf <= glob_max_terms do array_fact_1[iiif] := 0; array_fact_2[iiif, jjjf] := 0; jjjf := jjjf + 1 end do; iiif := iiif + 1 end do; x_start := -2.0; x_end := 1.0; array_y_init[1] := exact_soln_y(x_start); glob_h := 0.1; glob_look_poles := true; glob_max_iter := 50; glob_h := 0.00001; glob_look_poles := true; glob_max_iter := 100; glob_max_minutes := 1; glob_last_good_h := glob_h; glob_max_terms := max_terms; glob_max_sec := convfloat(60.0)*convfloat(glob_max_minutes) + convfloat(3600.0)*convfloat(glob_max_hours); glob_abserr := expt(10.0, glob_log10_abserr); glob_relerr := expt(10.0, glob_log10_relerr); chk_data(); array_y_set_initial[1, 1] := true; array_y_set_initial[1, 2] := false; array_y_set_initial[1, 3] := false; array_y_set_initial[1, 4] := false; array_y_set_initial[1, 5] := false; array_y_set_initial[1, 6] := false; array_y_set_initial[1, 7] := false; array_y_set_initial[1, 8] := false; array_y_set_initial[1, 9] := false; array_y_set_initial[1, 10] := false; array_y_set_initial[1, 11] := false; array_y_set_initial[1, 12] := false; array_y_set_initial[1, 13] := false; array_y_set_initial[1, 14] := false; array_y_set_initial[1, 15] := false; array_y_set_initial[1, 16] := false; array_y_set_initial[1, 17] := false; array_y_set_initial[1, 18] := false; array_y_set_initial[1, 19] := false; array_y_set_initial[1, 20] := false; array_y_set_initial[1, 21] := false; array_y_set_initial[1, 22] := false; array_y_set_initial[1, 23] := false; array_y_set_initial[1, 24] := false; array_y_set_initial[1, 25] := false; array_y_set_initial[1, 26] := false; array_y_set_initial[1, 27] := false; array_y_set_initial[1, 28] := false; array_y_set_initial[1, 29] := false; array_y_set_initial[1, 30] := false; if glob_html_log then html_log_file := fopen("html/entry.html", WRITE, TEXT) end if; omniout_str(ALWAYS, "START of Soultion"); array_x[1] := x_start; array_x[2] := glob_h; order_diff := 1; term_no := 1; while term_no <= order_diff do array_y[term_no] := array_y_init[term_no]*expt(glob_h, term_no - 1) /factorial_1(term_no - 1); term_no := term_no + 1 end do; rows := order_diff; r_order := 1; while r_order <= rows do term_no := 1; while term_no <= rows - r_order + 1 do it := term_no + r_order - 1; array_y_higher[r_order, term_no] := array_y_init[it]* expt(glob_h, term_no - 1)/factorial_1(term_no - 1); term_no := term_no + 1 end do; r_order := r_order + 1 end do; current_iter := 1; glob_clock_start_sec := elapsed_time_seconds(); if glob_small_float < omniabs(array_y_higher[1, 1]) then tmp := omniabs(array_y_higher[1, 1]); log10norm := log10(tmp); if log10norm < glob_log10normmin then glob_log10normmin := log10norm end if end if; display_alot(current_iter); glob_clock_sec := elapsed_time_seconds(); glob_current_iter := 0; glob_iter := 0; omniout_str(DEBUGL, " "); glob_reached_optimal_h := true; glob_optimal_clock_start_sec := elapsed_time_seconds(); while glob_current_iter < glob_max_iter and array_x[1] <= x_end and convfloat(glob_clock_sec) - convfloat(glob_orig_start_sec) < convfloat(glob_max_sec) do omniout_str(INFO, " "); omniout_str(INFO, "TOP MAIN SOLVE Loop"); glob_iter := glob_iter + 1; glob_clock_sec := elapsed_time_seconds(); glob_current_iter := glob_current_iter + 1; atomall(); if glob_look_poles then check_for_pole() end if; array_x[1] := array_x[1] + glob_h; array_x[2] := glob_h; order_diff := 1; ord := 2; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do array_y_higher_work[2, iii] := array_y_higher[2, iii]/( expt(glob_h, calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; temp_sum := 0.; ord := 2; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_y_higher_work[ord, iii]; iii := iii - 1 end do; array_y_higher_work2[ord, calc_term] := temp_sum*expt(glob_h, calc_term - 1)/factorial_1(calc_term - 1) ; ord := 1; calc_term := 2; iii := glob_max_terms; while calc_term <= iii do array_y_higher_work[1, iii] := array_y_higher[1, iii]/( expt(glob_h, calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; temp_sum := 0.; ord := 1; calc_term := 2; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_y_higher_work[ord, iii]; iii := iii - 1 end do; array_y_higher_work2[ord, calc_term] := temp_sum*expt(glob_h, calc_term - 1)/factorial_1(calc_term - 1) ; ord := 1; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do array_y_higher_work[1, iii] := array_y_higher[1, iii]/( expt(glob_h, calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; temp_sum := 0.; ord := 1; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_y_higher_work[ord, iii]; iii := iii - 1 end do; array_y_higher_work2[ord, calc_term] := temp_sum*expt(glob_h, calc_term - 1)/factorial_1(calc_term - 1) ; term_no := glob_max_terms; while 1 <= term_no do array_y[term_no] := array_y_higher_work2[1, term_no]; ord := 1; while ord <= order_diff do array_y_higher[ord, term_no] := array_y_higher_work2[ord, term_no]; ord := ord + 1 end do; term_no := term_no - 1 end do; display_alot(current_iter) end do; omniout_str(ALWAYS, "Finished!"); if glob_max_iter <= glob_iter then omniout_str(ALWAYS, "Maximum Iterations Reached before Solution Completed!") end if; if convfloat(glob_max_sec) <= elapsed_time_seconds() - convfloat(glob_orig_start_sec) then omniout_str(ALWAYS, "Maximum Time Reached before Solution Completed!") end if; glob_clock_sec := elapsed_time_seconds(); omniout_str(INFO, "diff ( y , x , 1 ) = m1 * 2.0 * x / (x * x + 1.0)\ /( x * x + 1.0);"); omniout_int(INFO, "Iterations ", 32, glob_iter, 4, " "); prog_report(x_start, x_end); if glob_html_log then logstart(html_log_file); logitem_str(html_log_file, "2012-08-12T23:53:43-05:00"); logitem_str(html_log_file, "Maple"); logitem_str(html_log_file, "sing4"); logitem_str(html_log_file, "diff ( y , x , 1 ) = m1 * 2.0 * x / (\ x * x + 1.0) /( x * x + 1.0);"); logitem_float(html_log_file, x_start); logitem_float(html_log_file, x_end); logitem_float(html_log_file, array_x[1]); logitem_float(html_log_file, glob_h); logitem_integer(html_log_file, Digits); logitem_integer(html_log_file, glob_max_terms); logitem_float(html_log_file, array_1st_rel_error[1]); logitem_float(html_log_file, array_last_rel_error[1]); logitem_integer(html_log_file, glob_iter); logitem_pole(html_log_file, array_type_pole[1]); if array_type_pole[1] = 1 or array_type_pole[1] = 2 then logitem_float(html_log_file, array_pole[1]); logitem_float(html_log_file, array_pole[2]); 0 else logitem_str(html_log_file, "NA"); logitem_str(html_log_file, "NA"); 0 end if; logitem_time(html_log_file, convfloat(glob_clock_sec)); if glob_percent_done < 100.0 then logitem_time(html_log_file, convfloat(glob_optimal_expect_sec)) ; 0 else logitem_str(html_log_file, "Done"); 0 end if; log_revs(html_log_file, " 119 "); logitem_str(html_log_file, "sing4 diffeq.mxt"); logitem_str(html_log_file, "sing4 maple results"); logitem_str(html_log_file, "1st test with c++"); logend(html_log_file) end if; if glob_html_log then fclose(html_log_file) end if end proc > main(); ##############ECHO OF PROBLEM################# ##############temp/sing4postode.ode################# diff ( y , x , 1 ) = m1 * 2.0 * x / (x * x + 1.0) /( x * x + 1.0); ! #BEGIN FIRST INPUT BLOCK Digits := 32; max_terms := 30; ! #END FIRST INPUT BLOCK #BEGIN SECOND INPUT BLOCK x_start := -2.0; x_end := 1.0; array_y_init[0 + 1] := exact_soln_y(x_start); glob_h := 0.1; glob_look_poles := true; glob_max_iter := 50; #END SECOND INPUT BLOCK #BEGIN OVERRIDE BLOCK glob_h := 0.00001 ; glob_look_poles := true; glob_max_iter := 100; glob_max_minutes := 1; #END OVERRIDE BLOCK ! #BEGIN USER DEF BLOCK exact_soln_y := proc(x) return(1.0 / (x * x + 1.0)); end; #END USER DEF BLOCK #######END OF ECHO OF PROBLEM################# START of Soultion x[1] = -2 y[1] (analytic) = 0.2 y[1] (numeric) = 0.2 absolute error = 0 relative error = 0 % "good digits = ", -1 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99999 y[1] (analytic) = 0.2000016000088000384001312002816 y[1] (numeric) = 0.20000160000880003840013120028159 absolute error = 1e-32 relative error = 4.9999600001000000000000000000000e-30 % "good digits = ", 31 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99998 y[1] (analytic) = 0.20000320003520030720209920901118 y[1] (numeric) = 0.20000320003520030720209920901115 absolute error = 3e-32 relative error = 1.4999760001200000000000000000000e-29 % "good digits = ", 30 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99997 y[1] (analytic) = 0.20000480007920103681062726842853 y[1] (numeric) = 0.20000480007920103681062726842849 absolute error = 4e-32 relative error = 1.9999520003600000000000000000000e-29 % "good digits = ", 30 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99996 y[1] (analytic) = 0.20000640014080245763358748835688 y[1] (numeric) = 0.20000640014080245763358748835683 absolute error = 5e-32 relative error = 2.4999200008000000000000000000000e-29 % "good digits = ", 30 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99995 y[1] (analytic) = 0.2000080002200048000820008799942 y[1] (numeric) = 0.20000800022000480008200087999414 absolute error = 6e-32 relative error = 2.9998800015000000000000000000000e-29 % "good digits = ", 30 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99994 y[1] (analytic) = 0.20000960031680829457003738970428 y[1] (numeric) = 0.20000960031680829457003738970421 absolute error = 7e-32 relative error = 3.4998320025200000000000000000000e-29 % "good digits = ", 30 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99993 y[1] (analytic) = 0.20001120043121317151501593280752 y[1] (numeric) = 0.20001120043121317151501593280744 absolute error = 8e-32 relative error = 3.9997760039200000000000000000000e-29 % "good digits = ", 30 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99992 y[1] (analytic) = 0.20001280056321966133740442737147 y[1] (numeric) = 0.20001280056321966133740442737138 absolute error = 9e-32 relative error = 4.4997120057600000000000000000001e-29 % "good digits = ", 30 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99991 y[1] (analytic) = 0.20001440071282799446081982800109 y[1] (numeric) = 0.20001440071282799446081982800098 absolute error = 1.1e-31 relative error = 5.4996040089099999999999999999999e-29 % "good digits = ", 30 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.9999 y[1] (analytic) = 0.20001600088003840131202815962871 y[1] (numeric) = 0.20001600088003840131202815962859 absolute error = 1.2e-31 relative error = 5.9995200120000000000000000000001e-29 % "good digits = ", 30 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99989 y[1] (analytic) = 0.20001760106485111232094455130383 y[1] (numeric) = 0.20001760106485111232094455130369 absolute error = 1.4e-31 relative error = 6.9993840169400000000000000000000e-29 % "good digits = ", 30 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99988 y[1] (analytic) = 0.20001920126726635792063326998249 y[1] (numeric) = 0.20001920126726635792063326998234 absolute error = 1.5e-31 relative error = 7.4992800216000000000000000000002e-29 % "good digits = ", 30 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99987 y[1] (analytic) = 0.20002080148728436854730775431655 y[1] (numeric) = 0.20002080148728436854730775431638 absolute error = 1.7e-31 relative error = 8.4991160287299999999999999999999e-29 % "good digits = ", 30 h = 1e-05 TOP MAIN SOLVE Loop memory used=3.8MB, alloc=3.0MB, time=0.45 Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99986 y[1] (analytic) = 0.20002240172490537464033064844253 y[1] (numeric) = 0.20002240172490537464033064844235 absolute error = 1.8e-31 relative error = 8.9989920352800000000000000000000e-29 % "good digits = ", 30 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99985 y[1] (analytic) = 0.20002400198012960664221383577033 y[1] (numeric) = 0.20002400198012960664221383577014 absolute error = 1.9e-31 relative error = 9.4988600427500000000000000000000e-29 % "good digits = ", 30 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99984 y[1] (analytic) = 0.20002560225295729499861847277159 y[1] (numeric) = 0.20002560225295729499861847277138 absolute error = 2.1e-31 relative error = 1.0498656053760000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99983 y[1] (analytic) = 0.2000272025433886701583550227678 y[1] (numeric) = 0.20002720254338867015835502276758 absolute error = 2.2e-31 relative error = 1.0998504063580000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99982 y[1] (analytic) = 0.2000288028514239625733832897182 y[1] (numeric) = 0.20002880285142396257338328971796 absolute error = 2.4e-31 relative error = 1.1998272077760000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99981 y[1] (analytic) = 0.20003040317706340269881245200728 y[1] (numeric) = 0.20003040317706340269881245200703 absolute error = 2.5e-31 relative error = 1.2498100090250000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.9998 y[1] (analytic) = 0.20003200352030722099290109623219 y[1] (numeric) = 0.20003200352030722099290109623193 absolute error = 2.6e-31 relative error = 1.2997920104000000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99979 y[1] (analytic) = 0.20003360388115564791705725098972 y[1] (numeric) = 0.20003360388115564791705725098945 absolute error = 2.7e-31 relative error = 1.3497732119070000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99978 y[1] (analytic) = 0.20003520425960891393583842066312 y[1] (numeric) = 0.20003520425960891393583842066284 absolute error = 2.8e-31 relative error = 1.3997536135520000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99977 y[1] (analytic) = 0.20003680465566724951695161920859 y[1] (numeric) = 0.20003680465566724951695161920829 absolute error = 3.0e-31 relative error = 1.4997240158700000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99976 y[1] (analytic) = 0.20003840506933088513125340394152 y[1] (numeric) = 0.20003840506933088513125340394121 absolute error = 3.1e-31 relative error = 1.5497024178560000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99975 y[1] (analytic) = 0.20004000550060005125274990932249 y[1] (numeric) = 0.20004000550060005125274990932217 absolute error = 3.2e-31 relative error = 1.5996800200000000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.572 x[1] = -1.99974 y[1] (analytic) = 0.20004160594947497835859688074296 y[1] (numeric) = 0.20004160594947497835859688074263 absolute error = 3.3e-31 relative error = 1.6496568223080000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99973 y[1] (analytic) = 0.20004320641595589692909970831072 y[1] (numeric) = 0.20004320641595589692909970831037 absolute error = 3.5e-31 relative error = 1.7496220255150000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99972 y[1] (analytic) = 0.20004480690004303744771346063504 y[1] (numeric) = 0.20004480690004303744771346063467 absolute error = 3.7e-31 relative error = 1.8495856290080000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99971 y[1] (analytic) = 0.20004640740173663040104291861158 y[1] (numeric) = 0.2000464074017366304010429186112 absolute error = 3.8e-31 relative error = 1.8995592319580000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.9997 y[1] (analytic) = 0.20004800792103690627884260920704 y[1] (numeric) = 0.20004800792103690627884260920665 absolute error = 3.9e-31 relative error = 1.9495320351000000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99969 y[1] (analytic) = 0.20004960845794409557401683924353 y[1] (numeric) = 0.20004960845794409557401683924312 absolute error = 4.1e-31 relative error = 2.0494916394010000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99968 y[1] (analytic) = 0.20005120901245842878261972918262 y[1] (numeric) = 0.2000512090124584287826197291822 absolute error = 4.2e-31 relative error = 2.0994624430080000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99967 y[1] (analytic) = 0.20005280958458013640385524690922 y[1] (numeric) = 0.20005280958458013640385524690878 absolute error = 4.4e-31 relative error = 2.1994192479160000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99966 y[1] (analytic) = 0.20005441017430944894007724151511 y[1] (numeric) = 0.20005441017430944894007724151466 absolute error = 4.5e-31 relative error = 2.2493880520200000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99965 y[1] (analytic) = 0.20005601078164659689678947708224 y[1] (numeric) = 0.20005601078164659689678947708178 absolute error = 4.6e-31 relative error = 2.2993560563500000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99964 y[1] (analytic) = 0.20005761140659181078264566646577 y[1] (numeric) = 0.20005761140659181078264566646529 absolute error = 4.8e-31 relative error = 2.3993088622080000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 memory used=7.6MB, alloc=4.1MB, time=1.04 x[1] = -1.99963 y[1] (analytic) = 0.20005921204914532110944950507678 y[1] (numeric) = 0.20005921204914532110944950507629 absolute error = 4.9e-31 relative error = 2.4492748670809999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99962 y[1] (analytic) = 0.20006081270930735839215470466479 y[1] (numeric) = 0.20006081270930735839215470466429 absolute error = 5.0e-31 relative error = 2.4992400722000000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99961 y[1] (analytic) = 0.20006241338707815314886502709998 y[1] (numeric) = 0.20006241338707815314886502709947 absolute error = 5.1e-31 relative error = 2.5492044775710000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.9996 y[1] (analytic) = 0.20006401408245793590083431815511 y[1] (numeric) = 0.20006401408245793590083431815459 absolute error = 5.2e-31 relative error = 2.5991680832000000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99959 y[1] (analytic) = 0.20006561479544693717246654128722 y[1] (numeric) = 0.20006561479544693717246654128668 absolute error = 5.4e-31 relative error = 2.6991144907740000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99958 y[1] (analytic) = 0.20006721552604538749131581141901 y[1] (numeric) = 0.20006721552604538749131581141846 absolute error = 5.5e-31 relative error = 2.7490760970200000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99957 y[1] (analytic) = 0.20006881627425351738808642872004 y[1] (numeric) = 0.20006881627425351738808642871948 absolute error = 5.6e-31 relative error = 2.7990369035440000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99956 y[1] (analytic) = 0.20007041704007155739663291238753 y[1] (numeric) = 0.20007041704007155739663291238696 absolute error = 5.7e-31 relative error = 2.8489969103520000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99955 y[1] (analytic) = 0.20007201782349973805396003442701 y[1] (numeric) = 0.20007201782349973805396003442643 absolute error = 5.8e-31 relative error = 2.8989561174500000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99954 y[1] (analytic) = 0.20007361862453828990022285343263 y[1] (numeric) = 0.20007361862453828990022285343204 absolute error = 5.9e-31 relative error = 2.9489145248440000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99953 y[1] (analytic) = 0.20007521944318744347872674836724 y[1] (numeric) = 0.20007521944318744347872674836663 absolute error = 6.1e-31 relative error = 3.0488533347490000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99952 y[1] (analytic) = 0.20007682027944742933592745234216 y[1] (numeric) = 0.20007682027944742933592745234154 absolute error = 6.2e-31 relative error = 3.0988097428480000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99951 y[1] (analytic) = 0.20007842113331847802143108639675 y[1] (numeric) = 0.20007842113331847802143108639611 absolute error = 6.4e-31 relative error = 3.1987457536639999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.9995 y[1] (analytic) = 0.2000800220048008200879941932776 y[1] (numeric) = 0.20008002200480082008799419327695 absolute error = 6.5e-31 relative error = 3.2487001625000000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99949 y[1] (analytic) = 0.20008162289389468609152377121759 y[1] (numeric) = 0.20008162289389468609152377121693 absolute error = 6.6e-31 relative error = 3.2986537716660000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99948 y[1] (analytic) = 0.20008322380060030659107730771455 y[1] (numeric) = 0.20008322380060030659107730771388 absolute error = 6.7e-31 relative error = 3.3486065811680000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99947 y[1] (analytic) = 0.20008482472491791214886281330973 y[1] (numeric) = 0.20008482472491791214886281330905 absolute error = 6.8e-31 relative error = 3.3985585910120000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99946 y[1] (analytic) = 0.20008642566684773333023885536599 y[1] (numeric) = 0.20008642566684773333023885536529 absolute error = 7.0e-31 relative error = 3.4984882041200000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99945 y[1] (analytic) = 0.20008802662639000070371459184568 y[1] (numeric) = 0.20008802662639000070371459184497 absolute error = 7.1e-31 relative error = 3.5484382147750000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99944 y[1] (analytic) = 0.20008962760354494484094980508831 y[1] (numeric) = 0.20008962760354494484094980508759 absolute error = 7.2e-31 relative error = 3.5983874257920000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99943 y[1] (analytic) = 0.20009122859831279631675493558789 y[1] (numeric) = 0.20009122859831279631675493558716 absolute error = 7.3e-31 relative error = 3.6483358371770000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.259 Order of pole = 3.571 x[1] = -1.99942 y[1] (analytic) = 0.20009282961069378570909111577007 y[1] (numeric) = 0.20009282961069378570909111576932 absolute error = 7.5e-31 relative error = 3.7482602522999999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99941 y[1] (analytic) = 0.20009443064068814359907020376891 y[1] (numeric) = 0.20009443064068814359907020376815 absolute error = 7.6e-31 relative error = 3.7982066645560000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.9994 y[1] (analytic) = 0.20009603168829610057095481720351 y[1] (numeric) = 0.20009603168829610057095481720274 absolute error = 7.7e-31 relative error = 3.8481522772000000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop memory used=11.4MB, alloc=4.2MB, time=1.63 Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99939 y[1] (analytic) = 0.20009763275351788721215836695425 y[1] (numeric) = 0.20009763275351788721215836695346 absolute error = 7.9e-31 relative error = 3.9480726939590000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99938 y[1] (analytic) = 0.20009923383635373411324509093882 y[1] (numeric) = 0.20009923383635373411324509093802 absolute error = 8.0e-31 relative error = 3.9980163075200000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99937 y[1] (analytic) = 0.20010083493680387186793008788801 y[1] (numeric) = 0.20010083493680387186793008788719 absolute error = 8.2e-31 relative error = 4.0979339254579999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99936 y[1] (analytic) = 0.20010243605486853107307935112111 y[1] (numeric) = 0.20010243605486853107307935112029 absolute error = 8.2e-31 relative error = 4.0979011358720000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99935 y[1] (analytic) = 0.20010403719054794232870980232123 y[1] (numeric) = 0.20010403719054794232870980232039 absolute error = 8.4e-31 relative error = 4.1978163549000000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99934 y[1] (analytic) = 0.20010563834384233623798932531013 y[1] (numeric) = 0.20010563834384233623798932530928 absolute error = 8.5e-31 relative error = 4.2477563702600000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99933 y[1] (analytic) = 0.20010723951475194340723679982299 y[1] (numeric) = 0.20010723951475194340723679982212 absolute error = 8.7e-31 relative error = 4.3476687905429999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99932 y[1] (analytic) = 0.20010884070327699444592213528271 y[1] (numeric) = 0.20010884070327699444592213528184 absolute error = 8.7e-31 relative error = 4.3476340022880000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99931 y[1] (analytic) = 0.20011044190941771996666630457416 y[1] (numeric) = 0.20011044190941771996666630457327 absolute error = 8.9e-31 relative error = 4.4475440237290000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.9993 y[1] (analytic) = 0.20011204313317435058524137781792 y[1] (numeric) = 0.20011204313317435058524137781702 absolute error = 9.0e-31 relative error = 4.4974804410000000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99929 y[1] (analytic) = 0.20011364437454711692057055614397 y[1] (numeric) = 0.20011364437454711692057055614305 absolute error = 9.2e-31 relative error = 4.5973876637719999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99928 y[1] (analytic) = 0.20011524563353624959472820546493 y[1] (numeric) = 0.200115245633536249594728205464 absolute error = 9.3e-31 relative error = 4.6473220821119999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99927 y[1] (analytic) = 0.20011684691014197923293989024917 y[1] (numeric) = 0.20011684691014197923293989024823 absolute error = 9.4e-31 relative error = 4.6972557009260000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99926 y[1] (analytic) = 0.20011844820436453646358240729357 y[1] (numeric) = 0.20011844820436453646358240729262 absolute error = 9.5e-31 relative error = 4.7471885202200000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99925 y[1] (analytic) = 0.20012004951620415191818381949602 y[1] (numeric) = 0.20012004951620415191818381949505 absolute error = 9.7e-31 relative error = 4.8470905456249999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99924 y[1] (analytic) = 0.20012165084566105623142348962765 y[1] (numeric) = 0.20012165084566105623142348962667 absolute error = 9.8e-31 relative error = 4.8970213660480000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99923 y[1] (analytic) = 0.20012325219273548004113211410484 y[1] (numeric) = 0.20012325219273548004113211410385 absolute error = 9.9e-31 relative error = 4.9469513869710000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99922 y[1] (analytic) = 0.20012485355742765398829175676088 y[1] (numeric) = 0.20012485355742765398829175675987 absolute error = 1.01e-30 relative error = 5.0468494144839999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99921 y[1] (analytic) = 0.2001264549397378087170358826174 y[1] (numeric) = 0.20012645493973780871703588261637 absolute error = 1.03e-30 relative error = 5.1467458428229999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.9992 y[1] (analytic) = 0.20012805633966617487464939165554 y[1] (numeric) = 0.2001280563396661748746493916545 absolute error = 1.04e-30 relative error = 5.1966726655999999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99919 y[1] (analytic) = 0.20012965775721298311156865258684 y[1] (numeric) = 0.20012965775721298311156865258579 absolute error = 1.05e-30 relative error = 5.2465986889049999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99918 y[1] (analytic) = 0.20013125919237846408138153662384 y[1] (numeric) = 0.20013125919237846408138153662278 absolute error = 1.06e-30 relative error = 5.2965239127439999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99917 y[1] (analytic) = 0.20013286064516284844082745125042 y[1] (numeric) = 0.20013286064516284844082745124935 absolute error = 1.07e-30 relative error = 5.3464483371230000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99916 y[1] (analytic) = 0.20013446211556636684979737399192 y[1] (numeric) = 0.20013446211556636684979737399083 absolute error = 1.09e-30 relative error = 5.4463383691039999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 memory used=15.2MB, alloc=4.3MB, time=2.22 x[1] = -1.99915 y[1] (analytic) = 0.20013606360358924997133388618486 y[1] (numeric) = 0.20013606360358924997133388618376 absolute error = 1.10e-30 relative error = 5.4962607947500000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99914 y[1] (analytic) = 0.20013766510923172847163120674655 y[1] (numeric) = 0.20013766510923172847163120674544 absolute error = 1.11e-30 relative error = 5.5461824209560000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99913 y[1] (analytic) = 0.20013926663249403302003522594432 y[1] (numeric) = 0.2001392666324940330200352259432 absolute error = 1.12e-30 relative error = 5.5961032477280000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99912 y[1] (analytic) = 0.20014086817337639428904353916451 y[1] (numeric) = 0.20014086817337639428904353916337 absolute error = 1.14e-30 relative error = 5.6959880828160000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99911 y[1] (analytic) = 0.20014246973187904295430548068117 y[1] (numeric) = 0.20014246973187904295430548068002 absolute error = 1.15e-30 relative error = 5.7459069109150000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.9991 y[1] (analytic) = 0.20014407130800220969462215742456 y[1] (numeric) = 0.20014407130800220969462215742339 absolute error = 1.17e-30 relative error = 5.8457889476999999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99909 y[1] (analytic) = 0.20014567290174612519194648274926 y[1] (numeric) = 0.20014567290174612519194648274809 absolute error = 1.17e-30 relative error = 5.8457421688770000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99908 y[1] (analytic) = 0.20014727451311102013138321020216 y[1] (numeric) = 0.20014727451311102013138321020097 absolute error = 1.19e-30 relative error = 5.9456218072160000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99907 y[1] (analytic) = 0.20014887614209712520118896729 y[1] (numeric) = 0.20014887614209712520118896728879 absolute error = 1.21e-30 relative error = 6.0454998465289999999999999999999e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99906 y[1] (analytic) = 0.20015047778870467109277228924679 y[1] (numeric) = 0.20015047778870467109277228924558 absolute error = 1.21e-30 relative error = 6.0454514691560000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99905 y[1] (analytic) = 0.20015207945293388850069365280092 y[1] (numeric) = 0.2001520794529338885006936527997 absolute error = 1.22e-30 relative error = 6.0953651010500000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99904 y[1] (analytic) = 0.20015368113478500812266550994193 y[1] (numeric) = 0.20015368113478500812266550994069 absolute error = 1.24e-30 relative error = 6.1952395427840000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99903 y[1] (analytic) = 0.20015528283425826065955232168707 y[1] (numeric) = 0.20015528283425826065955232168582 absolute error = 1.25e-30 relative error = 6.2451511761250000000000000000001e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99902 y[1] (analytic) = 0.20015688455135387681537059184763 y[1] (numeric) = 0.20015688455135387681537059184636 absolute error = 1.27e-30 relative error = 6.3450228197079999999999999999998e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.99901 y[1] (analytic) = 0.20015848628607208729728890079486 y[1] (numeric) = 0.20015848628607208729728890079358 absolute error = 1.28e-30 relative error = 6.3949324545280000000000000000000e-28 % "good digits = ", 29 h = 1e-05 TOP MAIN SOLVE Loop Complex estimate of poles used Radius of convergence = 2.258 Order of pole = 3.571 x[1] = -1.999 y[1] (analytic) = 0.20016008803841312281562793922579 y[1] (numeric) = 0.2001600880384131228156279392245 absolute error = 1.29e-30 relative error = 6.4448412900000000000000000000001e-28 % "good digits = ", 29 h = 1e-05 Finished! Maximum Iterations Reached before Solution Completed! diff ( y , x , 1 ) = m1 * 2.0 * x / (x * x + 1.0) /( x * x + 1.0); Iterations = 100 Total Elapsed Time = 2 Seconds Elapsed Time(since restart) = 2 Seconds Expected Time Remaining = 2 Hours 2 Minutes 49 Seconds Optimized Time Remaining = 2 Hours 1 Minutes 5 Seconds Time to Timeout = 57 Seconds Percent Done = 0.03367 % > quit memory used=17.7MB, alloc=4.3MB, time=2.58