|\^/| Maple 12 (IBM INTEL LINUX) ._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2008 \ MAPLE / All rights reserved. Maple is a trademark of <____ ____> Waterloo Maple Inc. | Type ? for help. > #BEGIN OUTFILE1 > > # Begin Function number 3 > display_alot := proc(iter) > global > INFO, > ALWAYS, > glob_max_terms, > DEBUGMASSIVE, > glob_iolevel, > DEBUGL, > #Top Generate Globals Decl > glob_max_minutes, > glob_normmax, > glob_curr_iter_when_opt, > glob_dump_analytic, > glob_not_yet_start_msg, > glob_not_yet_finished, > glob_almost_1, > years_in_century, > days_in_year, > glob_subiter_method, > glob_iter, > glob_warned2, > glob_small_float, > glob_max_iter, > glob_large_float, > MAX_UNCHANGED, > glob_max_hours, > glob_hmin, > glob_optimal_done, > glob_percent_done, > glob_log10relerr, > glob_abserr, > glob_log10_abserr, > glob_clock_sec, > glob_dump, > glob_current_iter, > glob_orig_start_sec, > glob_smallish_float, > glob_max_rel_trunc_err, > glob_display_flag, > glob_optimal_expect_sec, > glob_look_poles, > glob_hmax, > min_in_hour, > glob_html_log, > glob_max_sec, > glob_unchanged_h_cnt, > glob_relerr, > glob_hmin_init, > glob_initial_pass, > centuries_in_millinium, > glob_log10normmin, > glob_no_eqs, > glob_max_trunc_err, > glob_clock_start_sec, > djd_debug2, > djd_debug, > glob_log10abserr, > glob_optimal_start, > glob_h, > glob_disp_incr, > glob_max_opt_iter, > glob_start, > glob_optimal_clock_start_sec, > glob_log10_relerr, > glob_last_good_h, > glob_reached_optimal_h, > hours_in_day, > glob_warned, > sec_in_min, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_0D0, > array_const_1, > #END CONST > array_tmp1_a1, > array_1st_rel_error, > array_type_pole, > array_pole, > array_norms, > array_last_rel_error, > array_y_init, > array_tmp0, > array_tmp1, > array_tmp2, > array_m1, > array_y, > array_x, > array_complex_pole, > array_real_pole, > array_y_higher, > array_y_set_initial, > array_y_higher_work2, > array_y_higher_work, > array_poles, > glob_last; > > local abserr, analytic_val_y, ind_var, numeric_val, relerr, term_no; > #TOP DISPLAY ALOT > if (iter >= 0) then # if number 1 > ind_var := array_x[1]; > omniout_float(ALWAYS,"x[1] ",33,ind_var,20," "); > analytic_val_y := exact_soln_y(ind_var); > omniout_float(ALWAYS,"y[1] (analytic) ",33,analytic_val_y,20," "); > term_no := 1; > numeric_val := array_y[term_no]; > abserr := abs(numeric_val - analytic_val_y); > omniout_float(ALWAYS,"y[1] (numeric) ",33,numeric_val,20," "); > if (abs(analytic_val_y) <> 0.0) then # if number 2 > relerr := abserr*100.0/abs(analytic_val_y); > else > relerr := -1.0 ; > fi;# end if 2 > ; > if glob_iter = 1 then # if number 2 > array_1st_rel_error[1] := relerr; > else > array_last_rel_error[1] := relerr; > fi;# end if 2 > ; > omniout_float(ALWAYS,"absolute error ",4,abserr,20," "); > omniout_float(ALWAYS,"relative error ",4,relerr,20,"%"); > omniout_float(ALWAYS,"h ",4,glob_h,20," "); > #BOTTOM DISPLAY ALOT > fi;# end if 1 > ; > # End Function number 3 > end; display_alot := proc(iter) local abserr, analytic_val_y, ind_var, numeric_val, relerr, term_no; global INFO, ALWAYS, glob_max_terms, DEBUGMASSIVE, glob_iolevel, DEBUGL, glob_max_minutes, glob_normmax, glob_curr_iter_when_opt, glob_dump_analytic, glob_not_yet_start_msg, glob_not_yet_finished, glob_almost_1, years_in_century, days_in_year, glob_subiter_method, glob_iter, glob_warned2, glob_small_float, glob_max_iter, glob_large_float, MAX_UNCHANGED, glob_max_hours, glob_hmin, glob_optimal_done, glob_percent_done, glob_log10relerr, glob_abserr, glob_log10_abserr, glob_clock_sec, glob_dump, glob_current_iter, glob_orig_start_sec, glob_smallish_float, glob_max_rel_trunc_err, glob_display_flag, glob_optimal_expect_sec, glob_look_poles, glob_hmax, min_in_hour, glob_html_log, glob_max_sec, glob_unchanged_h_cnt, glob_relerr, glob_hmin_init, glob_initial_pass, centuries_in_millinium, glob_log10normmin, glob_no_eqs, glob_max_trunc_err, glob_clock_start_sec, djd_debug2, djd_debug, glob_log10abserr, glob_optimal_start, glob_h, glob_disp_incr, glob_max_opt_iter, glob_start, glob_optimal_clock_start_sec, glob_log10_relerr, glob_last_good_h, glob_reached_optimal_h, hours_in_day, glob_warned, sec_in_min, array_const_0D0, array_const_1, array_tmp1_a1, array_1st_rel_error, array_type_pole, array_pole, array_norms, array_last_rel_error, array_y_init, array_tmp0, array_tmp1, array_tmp2, array_m1, array_y, array_x, array_complex_pole, array_real_pole, array_y_higher, array_y_set_initial, array_y_higher_work2, array_y_higher_work, array_poles, glob_last; if 0 <= iter then ind_var := array_x[1]; omniout_float(ALWAYS, "x[1] ", 33, ind_var, 20, " "); analytic_val_y := exact_soln_y(ind_var); omniout_float(ALWAYS, "y[1] (analytic) ", 33, analytic_val_y, 20, " "); term_no := 1; numeric_val := array_y[term_no]; abserr := abs(numeric_val - analytic_val_y); omniout_float(ALWAYS, "y[1] (numeric) ", 33, numeric_val, 20, " "); if abs(analytic_val_y) <> 0. then relerr := abserr*100.0/abs(analytic_val_y) else relerr := -1.0 end if; if glob_iter = 1 then array_1st_rel_error[1] := relerr else array_last_rel_error[1] := relerr end if; omniout_float(ALWAYS, "absolute error ", 4, abserr, 20, " "); omniout_float(ALWAYS, "relative error ", 4, relerr, 20, "%"); omniout_float(ALWAYS, "h ", 4, glob_h, 20, " ") end if end proc > # Begin Function number 4 > adjust_for_pole := proc(h_param) > global > INFO, > ALWAYS, > glob_max_terms, > DEBUGMASSIVE, > glob_iolevel, > DEBUGL, > #Top Generate Globals Decl > glob_max_minutes, > glob_normmax, > glob_curr_iter_when_opt, > glob_dump_analytic, > glob_not_yet_start_msg, > glob_not_yet_finished, > glob_almost_1, > years_in_century, > days_in_year, > glob_subiter_method, > glob_iter, > glob_warned2, > glob_small_float, > glob_max_iter, > glob_large_float, > MAX_UNCHANGED, > glob_max_hours, > glob_hmin, > glob_optimal_done, > glob_percent_done, > glob_log10relerr, > glob_abserr, > glob_log10_abserr, > glob_clock_sec, > glob_dump, > glob_current_iter, > glob_orig_start_sec, > glob_smallish_float, > glob_max_rel_trunc_err, > glob_display_flag, > glob_optimal_expect_sec, > glob_look_poles, > glob_hmax, > min_in_hour, > glob_html_log, > glob_max_sec, > glob_unchanged_h_cnt, > glob_relerr, > glob_hmin_init, > glob_initial_pass, > centuries_in_millinium, > glob_log10normmin, > glob_no_eqs, > glob_max_trunc_err, > glob_clock_start_sec, > djd_debug2, > djd_debug, > glob_log10abserr, > glob_optimal_start, > glob_h, > glob_disp_incr, > glob_max_opt_iter, > glob_start, > glob_optimal_clock_start_sec, > glob_log10_relerr, > glob_last_good_h, > glob_reached_optimal_h, > hours_in_day, > glob_warned, > sec_in_min, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_0D0, > array_const_1, > #END CONST > array_tmp1_a1, > array_1st_rel_error, > array_type_pole, > array_pole, > array_norms, > array_last_rel_error, > array_y_init, > array_tmp0, > array_tmp1, > array_tmp2, > array_m1, > array_y, > array_x, > array_complex_pole, > array_real_pole, > array_y_higher, > array_y_set_initial, > array_y_higher_work2, > array_y_higher_work, > array_poles, > glob_last; > > local hnew, sz2, tmp; > #TOP ADJUST FOR POLE > > hnew := h_param; > glob_normmax := glob_small_float; > if (abs(array_y_higher[1,1]) > glob_small_float) then # if number 1 > tmp := abs(array_y_higher[1,1]); > if (tmp < glob_normmax) then # if number 2 > glob_normmax := tmp; > fi;# end if 2 > fi;# end if 1 > ; > if (glob_look_poles and (abs(array_pole[1]) > glob_small_float) and (array_pole[1] <> glob_large_float)) then # if number 1 > sz2 := array_pole[1]/10.0; > if (sz2 < hnew) then # if number 2 > omniout_float(INFO,"glob_h adjusted to ",20,h_param,12,"due to singularity."); > omniout_str(INFO,"Reached Optimal"); > newline(); > return(hnew); > fi;# end if 2 > fi;# end if 1 > ; > if (not glob_reached_optimal_h) then # if number 1 > glob_reached_optimal_h := true; > glob_curr_iter_when_opt := glob_current_iter; > glob_optimal_clock_start_sec := elapsed_time_seconds(); > glob_optimal_start := array_x[1]; > fi;# end if 1 > ; > hnew := sz2; > #END block > #BOTTOM ADJUST FOR POLE > # End Function number 4 > end; adjust_for_pole := proc(h_param) local hnew, sz2, tmp; global INFO, ALWAYS, glob_max_terms, DEBUGMASSIVE, glob_iolevel, DEBUGL, glob_max_minutes, glob_normmax, glob_curr_iter_when_opt, glob_dump_analytic, glob_not_yet_start_msg, glob_not_yet_finished, glob_almost_1, years_in_century, days_in_year, glob_subiter_method, glob_iter, glob_warned2, glob_small_float, glob_max_iter, glob_large_float, MAX_UNCHANGED, glob_max_hours, glob_hmin, glob_optimal_done, glob_percent_done, glob_log10relerr, glob_abserr, glob_log10_abserr, glob_clock_sec, glob_dump, glob_current_iter, glob_orig_start_sec, glob_smallish_float, glob_max_rel_trunc_err, glob_display_flag, glob_optimal_expect_sec, glob_look_poles, glob_hmax, min_in_hour, glob_html_log, glob_max_sec, glob_unchanged_h_cnt, glob_relerr, glob_hmin_init, glob_initial_pass, centuries_in_millinium, glob_log10normmin, glob_no_eqs, glob_max_trunc_err, glob_clock_start_sec, djd_debug2, djd_debug, glob_log10abserr, glob_optimal_start, glob_h, glob_disp_incr, glob_max_opt_iter, glob_start, glob_optimal_clock_start_sec, glob_log10_relerr, glob_last_good_h, glob_reached_optimal_h, hours_in_day, glob_warned, sec_in_min, array_const_0D0, array_const_1, array_tmp1_a1, array_1st_rel_error, array_type_pole, array_pole, array_norms, array_last_rel_error, array_y_init, array_tmp0, array_tmp1, array_tmp2, array_m1, array_y, array_x, array_complex_pole, array_real_pole, array_y_higher, array_y_set_initial, array_y_higher_work2, array_y_higher_work, array_poles, glob_last; hnew := h_param; glob_normmax := glob_small_float; if glob_small_float < abs(array_y_higher[1, 1]) then tmp := abs(array_y_higher[1, 1]); if tmp < glob_normmax then glob_normmax := tmp end if end if; if glob_look_poles and glob_small_float < abs(array_pole[1]) and array_pole[1] <> glob_large_float then sz2 := array_pole[1]/10.0; if sz2 < hnew then omniout_float(INFO, "glob_h adjusted to ", 20, h_param, 12, "due to singularity."); omniout_str(INFO, "Reached Optimal"); newline(); return hnew end if end if; if not glob_reached_optimal_h then glob_reached_optimal_h := true; glob_curr_iter_when_opt := glob_current_iter; glob_optimal_clock_start_sec := elapsed_time_seconds(); glob_optimal_start := array_x[1] end if; hnew := sz2 end proc > # Begin Function number 5 > prog_report := proc(x_start,x_end) > global > INFO, > ALWAYS, > glob_max_terms, > DEBUGMASSIVE, > glob_iolevel, > DEBUGL, > #Top Generate Globals Decl > glob_max_minutes, > glob_normmax, > glob_curr_iter_when_opt, > glob_dump_analytic, > glob_not_yet_start_msg, > glob_not_yet_finished, > glob_almost_1, > years_in_century, > days_in_year, > glob_subiter_method, > glob_iter, > glob_warned2, > glob_small_float, > glob_max_iter, > glob_large_float, > MAX_UNCHANGED, > glob_max_hours, > glob_hmin, > glob_optimal_done, > glob_percent_done, > glob_log10relerr, > glob_abserr, > glob_log10_abserr, > glob_clock_sec, > glob_dump, > glob_current_iter, > glob_orig_start_sec, > glob_smallish_float, > glob_max_rel_trunc_err, > glob_display_flag, > glob_optimal_expect_sec, > glob_look_poles, > glob_hmax, > min_in_hour, > glob_html_log, > glob_max_sec, > glob_unchanged_h_cnt, > glob_relerr, > glob_hmin_init, > glob_initial_pass, > centuries_in_millinium, > glob_log10normmin, > glob_no_eqs, > glob_max_trunc_err, > glob_clock_start_sec, > djd_debug2, > djd_debug, > glob_log10abserr, > glob_optimal_start, > glob_h, > glob_disp_incr, > glob_max_opt_iter, > glob_start, > glob_optimal_clock_start_sec, > glob_log10_relerr, > glob_last_good_h, > glob_reached_optimal_h, > hours_in_day, > glob_warned, > sec_in_min, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_0D0, > array_const_1, > #END CONST > array_tmp1_a1, > array_1st_rel_error, > array_type_pole, > array_pole, > array_norms, > array_last_rel_error, > array_y_init, > array_tmp0, > array_tmp1, > array_tmp2, > array_m1, > array_y, > array_x, > array_complex_pole, > array_real_pole, > array_y_higher, > array_y_set_initial, > array_y_higher_work2, > array_y_higher_work, > array_poles, > glob_last; > > local clock_sec, opt_clock_sec, clock_sec1, expect_sec, left_sec, percent_done, total_clock_sec; > #TOP PROGRESS REPORT > clock_sec1 := elapsed_time_seconds(); > total_clock_sec := convfloat(clock_sec1) - convfloat(glob_orig_start_sec); > glob_clock_sec := convfloat(clock_sec1) - convfloat(glob_clock_start_sec); > left_sec := convfloat(glob_max_sec) + convfloat(glob_orig_start_sec) - convfloat(clock_sec1); > expect_sec := comp_expect_sec(convfloat(x_end),convfloat(x_start),convfloat(array_x[1]) + convfloat(glob_h) ,convfloat( clock_sec1) - convfloat(glob_orig_start_sec)); > opt_clock_sec := convfloat( clock_sec1) - convfloat(glob_optimal_clock_start_sec); > glob_optimal_expect_sec := comp_expect_sec(convfloat(x_end),convfloat(x_start),convfloat(array_x[1]) +convfloat( glob_h) ,convfloat( opt_clock_sec)); > percent_done := comp_percent(convfloat(x_end),convfloat(x_start),convfloat(array_x[1]) + convfloat(glob_h)); > glob_percent_done := percent_done; > omniout_str_noeol(INFO,"Total Elapsed Time "); > omniout_timestr(convfloat(total_clock_sec)); > omniout_str_noeol(INFO,"Elapsed Time(since restart) "); > omniout_timestr(convfloat(glob_clock_sec)); > if convfloat(percent_done) < convfloat(100.0) then # if number 1 > omniout_str_noeol(INFO,"Expected Time Remaining "); > omniout_timestr(convfloat(expect_sec)); > omniout_str_noeol(INFO,"Optimized Time Remaining "); > omniout_timestr(convfloat(glob_optimal_expect_sec)); > fi;# end if 1 > ; > omniout_str_noeol(INFO,"Time to Timeout "); > omniout_timestr(convfloat(left_sec)); > omniout_float(INFO, "Percent Done ",33,percent_done,4,"%"); > #BOTTOM PROGRESS REPORT > # End Function number 5 > end; prog_report := proc(x_start, x_end) local clock_sec, opt_clock_sec, clock_sec1, expect_sec, left_sec, percent_done, total_clock_sec; global INFO, ALWAYS, glob_max_terms, DEBUGMASSIVE, glob_iolevel, DEBUGL, glob_max_minutes, glob_normmax, glob_curr_iter_when_opt, glob_dump_analytic, glob_not_yet_start_msg, glob_not_yet_finished, glob_almost_1, years_in_century, days_in_year, glob_subiter_method, glob_iter, glob_warned2, glob_small_float, glob_max_iter, glob_large_float, MAX_UNCHANGED, glob_max_hours, glob_hmin, glob_optimal_done, glob_percent_done, glob_log10relerr, glob_abserr, glob_log10_abserr, glob_clock_sec, glob_dump, glob_current_iter, glob_orig_start_sec, glob_smallish_float, glob_max_rel_trunc_err, glob_display_flag, glob_optimal_expect_sec, glob_look_poles, glob_hmax, min_in_hour, glob_html_log, glob_max_sec, glob_unchanged_h_cnt, glob_relerr, glob_hmin_init, glob_initial_pass, centuries_in_millinium, glob_log10normmin, glob_no_eqs, glob_max_trunc_err, glob_clock_start_sec, djd_debug2, djd_debug, glob_log10abserr, glob_optimal_start, glob_h, glob_disp_incr, glob_max_opt_iter, glob_start, glob_optimal_clock_start_sec, glob_log10_relerr, glob_last_good_h, glob_reached_optimal_h, hours_in_day, glob_warned, sec_in_min, array_const_0D0, array_const_1, array_tmp1_a1, array_1st_rel_error, array_type_pole, array_pole, array_norms, array_last_rel_error, array_y_init, array_tmp0, array_tmp1, array_tmp2, array_m1, array_y, array_x, array_complex_pole, array_real_pole, array_y_higher, array_y_set_initial, array_y_higher_work2, array_y_higher_work, array_poles, glob_last; clock_sec1 := elapsed_time_seconds(); total_clock_sec := convfloat(clock_sec1) - convfloat(glob_orig_start_sec); glob_clock_sec := convfloat(clock_sec1) - convfloat(glob_clock_start_sec); left_sec := convfloat(glob_max_sec) + convfloat(glob_orig_start_sec) - convfloat(clock_sec1); expect_sec := comp_expect_sec(convfloat(x_end), convfloat(x_start), convfloat(array_x[1]) + convfloat(glob_h), convfloat(clock_sec1) - convfloat(glob_orig_start_sec)); opt_clock_sec := convfloat(clock_sec1) - convfloat(glob_optimal_clock_start_sec); glob_optimal_expect_sec := comp_expect_sec(convfloat(x_end), convfloat(x_start), convfloat(array_x[1]) + convfloat(glob_h), convfloat(opt_clock_sec)); percent_done := comp_percent(convfloat(x_end), convfloat(x_start), convfloat(array_x[1]) + convfloat(glob_h)); glob_percent_done := percent_done; omniout_str_noeol(INFO, "Total Elapsed Time "); omniout_timestr(convfloat(total_clock_sec)); omniout_str_noeol(INFO, "Elapsed Time(since restart) "); omniout_timestr(convfloat(glob_clock_sec)); if convfloat(percent_done) < convfloat(100.0) then omniout_str_noeol(INFO, "Expected Time Remaining "); omniout_timestr(convfloat(expect_sec)); omniout_str_noeol(INFO, "Optimized Time Remaining "); omniout_timestr(convfloat(glob_optimal_expect_sec)) end if; omniout_str_noeol(INFO, "Time to Timeout "); omniout_timestr(convfloat(left_sec)); omniout_float(INFO, "Percent Done ", 33, percent_done, 4, "%") end proc > # Begin Function number 6 > check_for_pole := proc() > global > INFO, > ALWAYS, > glob_max_terms, > DEBUGMASSIVE, > glob_iolevel, > DEBUGL, > #Top Generate Globals Decl > glob_max_minutes, > glob_normmax, > glob_curr_iter_when_opt, > glob_dump_analytic, > glob_not_yet_start_msg, > glob_not_yet_finished, > glob_almost_1, > years_in_century, > days_in_year, > glob_subiter_method, > glob_iter, > glob_warned2, > glob_small_float, > glob_max_iter, > glob_large_float, > MAX_UNCHANGED, > glob_max_hours, > glob_hmin, > glob_optimal_done, > glob_percent_done, > glob_log10relerr, > glob_abserr, > glob_log10_abserr, > glob_clock_sec, > glob_dump, > glob_current_iter, > glob_orig_start_sec, > glob_smallish_float, > glob_max_rel_trunc_err, > glob_display_flag, > glob_optimal_expect_sec, > glob_look_poles, > glob_hmax, > min_in_hour, > glob_html_log, > glob_max_sec, > glob_unchanged_h_cnt, > glob_relerr, > glob_hmin_init, > glob_initial_pass, > centuries_in_millinium, > glob_log10normmin, > glob_no_eqs, > glob_max_trunc_err, > glob_clock_start_sec, > djd_debug2, > djd_debug, > glob_log10abserr, > glob_optimal_start, > glob_h, > glob_disp_incr, > glob_max_opt_iter, > glob_start, > glob_optimal_clock_start_sec, > glob_log10_relerr, > glob_last_good_h, > glob_reached_optimal_h, > hours_in_day, > glob_warned, > sec_in_min, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_0D0, > array_const_1, > #END CONST > array_tmp1_a1, > array_1st_rel_error, > array_type_pole, > array_pole, > array_norms, > array_last_rel_error, > array_y_init, > array_tmp0, > array_tmp1, > array_tmp2, > array_m1, > array_y, > array_x, > array_complex_pole, > array_real_pole, > array_y_higher, > array_y_set_initial, > array_y_higher_work2, > array_y_higher_work, > array_poles, > glob_last; > > local cnt, dr1, dr2, ds1, ds2, hdrc, m, n, nr1, nr2, ord_no, rad_c, rcs, rm0, rm1, rm2, rm3, rm4, found; > #TOP CHECK FOR POLE > #IN RADII REAL EQ = 1 > #Computes radius of convergence and r_order of pole from 3 adjacent Taylor series terms. EQUATUON NUMBER 1 > #Applies to pole of arbitrary r_order on the real axis, > #Due to Prof. George Corliss. > n := glob_max_terms; > m := n - 1 - 1; > while ((m >= 10) and ((abs(array_y_higher[1,m]) < glob_small_float) or (abs(array_y_higher[1,m-1]) < glob_small_float) or (abs(array_y_higher[1,m-2]) < glob_small_float ))) do # do number 2 > m := m - 1; > od;# end do number 2 > ; > if (m > 10) then # if number 1 > rm0 := array_y_higher[1,m]/array_y_higher[1,m-1]; > rm1 := array_y_higher[1,m-1]/array_y_higher[1,m-2]; > hdrc := convfloat(m-1)*rm0-convfloat(m-2)*rm1; > if (abs(hdrc) > glob_small_float) then # if number 2 > rcs := glob_h/hdrc; > ord_no := convfloat(m-1)*rm0/hdrc - convfloat(m) + 2.0; > array_real_pole[1,1] := rcs; > array_real_pole[1,2] := ord_no; > else > array_real_pole[1,1] := glob_large_float; > array_real_pole[1,2] := glob_large_float; > fi;# end if 2 > else > array_real_pole[1,1] := glob_large_float; > array_real_pole[1,2] := glob_large_float; > fi;# end if 1 > ; > #BOTTOM RADII REAL EQ = 1 > #TOP RADII COMPLEX EQ = 1 > #Computes radius of convergence for complex conjugate pair of poles. > #from 6 adjacent Taylor series terms > #Also computes r_order of poles. > #Due to Manuel Prieto. > #With a correction by Dennis J. Darland > n := glob_max_terms - 1 - 1; > cnt := 0; > while ((cnt < 5) and (n >= 10)) do # do number 2 > if (abs(array_y_higher[1,n]) > glob_small_float) then # if number 1 > cnt := cnt + 1; > else > cnt := 0; > fi;# end if 1 > ; > n := n - 1; > od;# end do number 2 > ; > m := n + cnt; > if (m <= 10) then # if number 1 > array_complex_pole[1,1] := glob_large_float; > array_complex_pole[1,2] := glob_large_float; > elif (abs(array_y_higher[1,m]) >= (glob_large_float)) or (abs(array_y_higher[1,m-1]) >=(glob_large_float)) or (abs(array_y_higher[1,m-2]) >= (glob_large_float)) or (abs(array_y_higher[1,m-3]) >= (glob_large_float)) or (abs(array_y_higher[1,m-4]) >= (glob_large_float)) or (abs(array_y_higher[1,m-5]) >= (glob_large_float)) then # if number 2 > array_complex_pole[1,1] := glob_large_float; > array_complex_pole[1,2] := glob_large_float; > else > rm0 := (array_y_higher[1,m])/(array_y_higher[1,m-1]); > rm1 := (array_y_higher[1,m-1])/(array_y_higher[1,m-2]); > rm2 := (array_y_higher[1,m-2])/(array_y_higher[1,m-3]); > rm3 := (array_y_higher[1,m-3])/(array_y_higher[1,m-4]); > rm4 := (array_y_higher[1,m-4])/(array_y_higher[1,m-5]); > nr1 := convfloat(m-1)*rm0 - 2.0*convfloat(m-2)*rm1 + convfloat(m-3)*rm2; > nr2 := convfloat(m-2)*rm1 - 2.0*convfloat(m-3)*rm2 + convfloat(m-4)*rm3; > dr1 := (-1.0)/rm1 + 2.0/rm2 - 1.0/rm3; > dr2 := (-1.0)/rm2 + 2.0/rm3 - 1.0/rm4; > ds1 := 3.0/rm1 - 8.0/rm2 + 5.0/rm3; > ds2 := 3.0/rm2 - 8.0/rm3 + 5.0/rm4; > if ((abs(nr1 * dr2 - nr2 * dr1) <= glob_small_float) or (abs(dr1) <= glob_small_float)) then # if number 3 > array_complex_pole[1,1] := glob_large_float; > array_complex_pole[1,2] := glob_large_float; > else > if (abs(nr1*dr2 - nr2 * dr1) > glob_small_float) then # if number 4 > rcs := ((ds1*dr2 - ds2*dr1 +dr1*dr2)/(nr1*dr2 - nr2 * dr1)); > #(Manuels) rcs := (ds1*dr2 - ds2*dr1)/(nr1*dr2 - nr2 * dr1) > ord_no := (rcs*nr1 - ds1)/(2.0*dr1) -convfloat(m)/2.0; > if (abs(rcs) > glob_small_float) then # if number 5 > if (rcs > 0.0) then # if number 6 > rad_c := sqrt(rcs) * glob_h; > else > rad_c := glob_large_float; > fi;# end if 6 > else > rad_c := glob_large_float; > ord_no := glob_large_float; > fi;# end if 5 > else > rad_c := glob_large_float; > ord_no := glob_large_float; > fi;# end if 4 > fi;# end if 3 > ; > array_complex_pole[1,1] := rad_c; > array_complex_pole[1,2] := ord_no; > fi;# end if 2 > ; > #BOTTOM RADII COMPLEX EQ = 1 > found := false; > #TOP WHICH RADII EQ = 1 > if not found and ((array_real_pole[1,1] = glob_large_float) or (array_real_pole[1,2] = glob_large_float)) and ((array_complex_pole[1,1] <> glob_large_float) and (array_complex_pole[1,2] <> glob_large_float)) and ((array_complex_pole[1,1] > 0.0) and (array_complex_pole[1,2] > 0.0)) then # if number 2 > array_poles[1,1] := array_complex_pole[1,1]; > array_poles[1,2] := array_complex_pole[1,2]; > found := true; > array_type_pole[1] := 2; > if (glob_display_flag) then # if number 3 > omniout_str(ALWAYS,"Complex estimate of poles used"); > fi;# end if 3 > ; > fi;# end if 2 > ; > if not found and ((array_real_pole[1,1] <> glob_large_float) and (array_real_pole[1,2] <> glob_large_float) and (array_real_pole[1,1] > 0.0) and (array_real_pole[1,2] > 0.0) and ((array_complex_pole[1,1] = glob_large_float) or (array_complex_pole[1,2] = glob_large_float) or (array_complex_pole[1,1] <= 0.0 ) or (array_complex_pole[1,2] <= 0.0))) then # if number 2 > array_poles[1,1] := array_real_pole[1,1]; > array_poles[1,2] := array_real_pole[1,2]; > found := true; > array_type_pole[1] := 1; > if (glob_display_flag) then # if number 3 > omniout_str(ALWAYS,"Real estimate of pole used"); > fi;# end if 3 > ; > fi;# end if 2 > ; > if not found and (((array_real_pole[1,1] = glob_large_float) or (array_real_pole[1,2] = glob_large_float)) and ((array_complex_pole[1,1] = glob_large_float) or (array_complex_pole[1,2] = glob_large_float))) then # if number 2 > array_poles[1,1] := glob_large_float; > array_poles[1,2] := glob_large_float; > found := true; > array_type_pole[1] := 3; > if (glob_display_flag) then # if number 3 > omniout_str(ALWAYS,"NO POLE"); > fi;# end if 3 > ; > fi;# end if 2 > ; > if not found and ((array_real_pole[1,1] < array_complex_pole[1,1]) and (array_real_pole[1,1] > 0.0) and (array_real_pole[1,2] > 0.0)) then # if number 2 > array_poles[1,1] := array_real_pole[1,1]; > array_poles[1,2] := array_real_pole[1,2]; > found := true; > array_type_pole[1] := 1; > if (glob_display_flag) then # if number 3 > omniout_str(ALWAYS,"Real estimate of pole used"); > fi;# end if 3 > ; > fi;# end if 2 > ; > if not found and ((array_complex_pole[1,1] <> glob_large_float) and (array_complex_pole[1,2] <> glob_large_float) and (array_complex_pole[1,1] > 0.0) and (array_complex_pole[1,2] > 0.0)) then # if number 2 > array_poles[1,1] := array_complex_pole[1,1]; > array_poles[1,2] := array_complex_pole[1,2]; > array_type_pole[1] := 2; > found := true; > if (glob_display_flag) then # if number 3 > omniout_str(ALWAYS,"Complex estimate of poles used"); > fi;# end if 3 > ; > fi;# end if 2 > ; > if not found then # if number 2 > array_poles[1,1] := glob_large_float; > array_poles[1,2] := glob_large_float; > array_type_pole[1] := 3; > if (glob_display_flag) then # if number 3 > omniout_str(ALWAYS,"NO POLE"); > fi;# end if 3 > ; > fi;# end if 2 > ; > #BOTTOM WHICH RADII EQ = 1 > array_pole[1] := glob_large_float; > array_pole[2] := glob_large_float; > #TOP WHICH RADIUS EQ = 1 > if array_pole[1] > array_poles[1,1] then # if number 2 > array_pole[1] := array_poles[1,1]; > array_pole[2] := array_poles[1,2]; > fi;# end if 2 > ; > #BOTTOM WHICH RADIUS EQ = 1 > #BOTTOM CHECK FOR POLE > display_pole(); > # End Function number 6 > end; check_for_pole := proc() local cnt, dr1, dr2, ds1, ds2, hdrc, m, n, nr1, nr2, ord_no, rad_c, rcs, rm0, rm1, rm2, rm3, rm4, found; global INFO, ALWAYS, glob_max_terms, DEBUGMASSIVE, glob_iolevel, DEBUGL, glob_max_minutes, glob_normmax, glob_curr_iter_when_opt, glob_dump_analytic, glob_not_yet_start_msg, glob_not_yet_finished, glob_almost_1, years_in_century, days_in_year, glob_subiter_method, glob_iter, glob_warned2, glob_small_float, glob_max_iter, glob_large_float, MAX_UNCHANGED, glob_max_hours, glob_hmin, glob_optimal_done, glob_percent_done, glob_log10relerr, glob_abserr, glob_log10_abserr, glob_clock_sec, glob_dump, glob_current_iter, glob_orig_start_sec, glob_smallish_float, glob_max_rel_trunc_err, glob_display_flag, glob_optimal_expect_sec, glob_look_poles, glob_hmax, min_in_hour, glob_html_log, glob_max_sec, glob_unchanged_h_cnt, glob_relerr, glob_hmin_init, glob_initial_pass, centuries_in_millinium, glob_log10normmin, glob_no_eqs, glob_max_trunc_err, glob_clock_start_sec, djd_debug2, djd_debug, glob_log10abserr, glob_optimal_start, glob_h, glob_disp_incr, glob_max_opt_iter, glob_start, glob_optimal_clock_start_sec, glob_log10_relerr, glob_last_good_h, glob_reached_optimal_h, hours_in_day, glob_warned, sec_in_min, array_const_0D0, array_const_1, array_tmp1_a1, array_1st_rel_error, array_type_pole, array_pole, array_norms, array_last_rel_error, array_y_init, array_tmp0, array_tmp1, array_tmp2, array_m1, array_y, array_x, array_complex_pole, array_real_pole, array_y_higher, array_y_set_initial, array_y_higher_work2, array_y_higher_work, array_poles, glob_last; n := glob_max_terms; m := n - 2; while 10 <= m and (abs(array_y_higher[1, m]) < glob_small_float or abs(array_y_higher[1, m - 1]) < glob_small_float or abs(array_y_higher[1, m - 2]) < glob_small_float) do m := m - 1 end do; if 10 < m then rm0 := array_y_higher[1, m]/array_y_higher[1, m - 1]; rm1 := array_y_higher[1, m - 1]/array_y_higher[1, m - 2]; hdrc := convfloat(m - 1)*rm0 - convfloat(m - 2)*rm1; if glob_small_float < abs(hdrc) then rcs := glob_h/hdrc; ord_no := convfloat(m - 1)*rm0/hdrc - convfloat(m) + 2.0; array_real_pole[1, 1] := rcs; array_real_pole[1, 2] := ord_no else array_real_pole[1, 1] := glob_large_float; array_real_pole[1, 2] := glob_large_float end if else array_real_pole[1, 1] := glob_large_float; array_real_pole[1, 2] := glob_large_float end if; n := glob_max_terms - 2; cnt := 0; while cnt < 5 and 10 <= n do if glob_small_float < abs(array_y_higher[1, n]) then cnt := cnt + 1 else cnt := 0 end if; n := n - 1 end do; m := n + cnt; if m <= 10 then array_complex_pole[1, 1] := glob_large_float; array_complex_pole[1, 2] := glob_large_float elif glob_large_float <= abs(array_y_higher[1, m]) or glob_large_float <= abs(array_y_higher[1, m - 1]) or glob_large_float <= abs(array_y_higher[1, m - 2]) or glob_large_float <= abs(array_y_higher[1, m - 3]) or glob_large_float <= abs(array_y_higher[1, m - 4]) or glob_large_float <= abs(array_y_higher[1, m - 5]) then array_complex_pole[1, 1] := glob_large_float; array_complex_pole[1, 2] := glob_large_float else rm0 := array_y_higher[1, m]/array_y_higher[1, m - 1]; rm1 := array_y_higher[1, m - 1]/array_y_higher[1, m - 2]; rm2 := array_y_higher[1, m - 2]/array_y_higher[1, m - 3]; rm3 := array_y_higher[1, m - 3]/array_y_higher[1, m - 4]; rm4 := array_y_higher[1, m - 4]/array_y_higher[1, m - 5]; nr1 := convfloat(m - 1)*rm0 - 2.0*convfloat(m - 2)*rm1 + convfloat(m - 3)*rm2; nr2 := convfloat(m - 2)*rm1 - 2.0*convfloat(m - 3)*rm2 + convfloat(m - 4)*rm3; dr1 := (-1)*(1.0)/rm1 + 2.0/rm2 - 1.0/rm3; dr2 := (-1)*(1.0)/rm2 + 2.0/rm3 - 1.0/rm4; ds1 := 3.0/rm1 - 8.0/rm2 + 5.0/rm3; ds2 := 3.0/rm2 - 8.0/rm3 + 5.0/rm4; if abs(nr1*dr2 - nr2*dr1) <= glob_small_float or abs(dr1) <= glob_small_float then array_complex_pole[1, 1] := glob_large_float; array_complex_pole[1, 2] := glob_large_float else if glob_small_float < abs(nr1*dr2 - nr2*dr1) then rcs := (ds1*dr2 - ds2*dr1 + dr1*dr2)/(nr1*dr2 - nr2*dr1); ord_no := (rcs*nr1 - ds1)/(2.0*dr1) - convfloat(m)/2.0; if glob_small_float < abs(rcs) then if 0. < rcs then rad_c := sqrt(rcs)*glob_h else rad_c := glob_large_float end if else rad_c := glob_large_float; ord_no := glob_large_float end if else rad_c := glob_large_float; ord_no := glob_large_float end if end if; array_complex_pole[1, 1] := rad_c; array_complex_pole[1, 2] := ord_no end if; found := false; if not found and (array_real_pole[1, 1] = glob_large_float or array_real_pole[1, 2] = glob_large_float) and array_complex_pole[1, 1] <> glob_large_float and array_complex_pole[1, 2] <> glob_large_float and 0. < array_complex_pole[1, 1] and 0. < array_complex_pole[1, 2] then array_poles[1, 1] := array_complex_pole[1, 1]; array_poles[1, 2] := array_complex_pole[1, 2]; found := true; array_type_pole[1] := 2; if glob_display_flag then omniout_str(ALWAYS, "Complex estimate of poles used") end if end if; if not found and array_real_pole[1, 1] <> glob_large_float and array_real_pole[1, 2] <> glob_large_float and 0. < array_real_pole[1, 1] and 0. < array_real_pole[1, 2] and ( array_complex_pole[1, 1] = glob_large_float or array_complex_pole[1, 2] = glob_large_float or array_complex_pole[1, 1] <= 0. or array_complex_pole[1, 2] <= 0.) then array_poles[1, 1] := array_real_pole[1, 1]; array_poles[1, 2] := array_real_pole[1, 2]; found := true; array_type_pole[1] := 1; if glob_display_flag then omniout_str(ALWAYS, "Real estimate of pole used") end if end if; if not found and (array_real_pole[1, 1] = glob_large_float or array_real_pole[1, 2] = glob_large_float) and ( array_complex_pole[1, 1] = glob_large_float or array_complex_pole[1, 2] = glob_large_float) then array_poles[1, 1] := glob_large_float; array_poles[1, 2] := glob_large_float; found := true; array_type_pole[1] := 3; if glob_display_flag then omniout_str(ALWAYS, "NO POLE") end if end if; if not found and array_real_pole[1, 1] < array_complex_pole[1, 1] and 0. < array_real_pole[1, 1] and 0. < array_real_pole[1, 2] then array_poles[1, 1] := array_real_pole[1, 1]; array_poles[1, 2] := array_real_pole[1, 2]; found := true; array_type_pole[1] := 1; if glob_display_flag then omniout_str(ALWAYS, "Real estimate of pole used") end if end if; if not found and array_complex_pole[1, 1] <> glob_large_float and array_complex_pole[1, 2] <> glob_large_float and 0. < array_complex_pole[1, 1] and 0. < array_complex_pole[1, 2] then array_poles[1, 1] := array_complex_pole[1, 1]; array_poles[1, 2] := array_complex_pole[1, 2]; array_type_pole[1] := 2; found := true; if glob_display_flag then omniout_str(ALWAYS, "Complex estimate of poles used") end if end if; if not found then array_poles[1, 1] := glob_large_float; array_poles[1, 2] := glob_large_float; array_type_pole[1] := 3; if glob_display_flag then omniout_str(ALWAYS, "NO POLE") end if end if; array_pole[1] := glob_large_float; array_pole[2] := glob_large_float; if array_poles[1, 1] < array_pole[1] then array_pole[1] := array_poles[1, 1]; array_pole[2] := array_poles[1, 2] end if; display_pole() end proc > # Begin Function number 7 > get_norms := proc() > global > INFO, > ALWAYS, > glob_max_terms, > DEBUGMASSIVE, > glob_iolevel, > DEBUGL, > #Top Generate Globals Decl > glob_max_minutes, > glob_normmax, > glob_curr_iter_when_opt, > glob_dump_analytic, > glob_not_yet_start_msg, > glob_not_yet_finished, > glob_almost_1, > years_in_century, > days_in_year, > glob_subiter_method, > glob_iter, > glob_warned2, > glob_small_float, > glob_max_iter, > glob_large_float, > MAX_UNCHANGED, > glob_max_hours, > glob_hmin, > glob_optimal_done, > glob_percent_done, > glob_log10relerr, > glob_abserr, > glob_log10_abserr, > glob_clock_sec, > glob_dump, > glob_current_iter, > glob_orig_start_sec, > glob_smallish_float, > glob_max_rel_trunc_err, > glob_display_flag, > glob_optimal_expect_sec, > glob_look_poles, > glob_hmax, > min_in_hour, > glob_html_log, > glob_max_sec, > glob_unchanged_h_cnt, > glob_relerr, > glob_hmin_init, > glob_initial_pass, > centuries_in_millinium, > glob_log10normmin, > glob_no_eqs, > glob_max_trunc_err, > glob_clock_start_sec, > djd_debug2, > djd_debug, > glob_log10abserr, > glob_optimal_start, > glob_h, > glob_disp_incr, > glob_max_opt_iter, > glob_start, > glob_optimal_clock_start_sec, > glob_log10_relerr, > glob_last_good_h, > glob_reached_optimal_h, > hours_in_day, > glob_warned, > sec_in_min, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_0D0, > array_const_1, > #END CONST > array_tmp1_a1, > array_1st_rel_error, > array_type_pole, > array_pole, > array_norms, > array_last_rel_error, > array_y_init, > array_tmp0, > array_tmp1, > array_tmp2, > array_m1, > array_y, > array_x, > array_complex_pole, > array_real_pole, > array_y_higher, > array_y_set_initial, > array_y_higher_work2, > array_y_higher_work, > array_poles, > glob_last; > > local iii; > if (not glob_initial_pass) then # if number 2 > set_z(array_norms,glob_max_terms+1); > #TOP GET NORMS > iii := 1; > while (iii <= glob_max_terms) do # do number 2 > if (abs(array_y[iii]) > array_norms[iii]) then # if number 3 > array_norms[iii] := abs(array_y[iii]); > fi;# end if 3 > ; > iii := iii + 1; > od;# end do number 2 > #GET NORMS > ; > fi;# end if 2 > ; > # End Function number 7 > end; get_norms := proc() local iii; global INFO, ALWAYS, glob_max_terms, DEBUGMASSIVE, glob_iolevel, DEBUGL, glob_max_minutes, glob_normmax, glob_curr_iter_when_opt, glob_dump_analytic, glob_not_yet_start_msg, glob_not_yet_finished, glob_almost_1, years_in_century, days_in_year, glob_subiter_method, glob_iter, glob_warned2, glob_small_float, glob_max_iter, glob_large_float, MAX_UNCHANGED, glob_max_hours, glob_hmin, glob_optimal_done, glob_percent_done, glob_log10relerr, glob_abserr, glob_log10_abserr, glob_clock_sec, glob_dump, glob_current_iter, glob_orig_start_sec, glob_smallish_float, glob_max_rel_trunc_err, glob_display_flag, glob_optimal_expect_sec, glob_look_poles, glob_hmax, min_in_hour, glob_html_log, glob_max_sec, glob_unchanged_h_cnt, glob_relerr, glob_hmin_init, glob_initial_pass, centuries_in_millinium, glob_log10normmin, glob_no_eqs, glob_max_trunc_err, glob_clock_start_sec, djd_debug2, djd_debug, glob_log10abserr, glob_optimal_start, glob_h, glob_disp_incr, glob_max_opt_iter, glob_start, glob_optimal_clock_start_sec, glob_log10_relerr, glob_last_good_h, glob_reached_optimal_h, hours_in_day, glob_warned, sec_in_min, array_const_0D0, array_const_1, array_tmp1_a1, array_1st_rel_error, array_type_pole, array_pole, array_norms, array_last_rel_error, array_y_init, array_tmp0, array_tmp1, array_tmp2, array_m1, array_y, array_x, array_complex_pole, array_real_pole, array_y_higher, array_y_set_initial, array_y_higher_work2, array_y_higher_work, array_poles, glob_last; if not glob_initial_pass then set_z(array_norms, glob_max_terms + 1); iii := 1; while iii <= glob_max_terms do if array_norms[iii] < abs(array_y[iii]) then array_norms[iii] := abs(array_y[iii]) end if; iii := iii + 1 end do end if end proc > # Begin Function number 8 > atomall := proc() > global > INFO, > ALWAYS, > glob_max_terms, > DEBUGMASSIVE, > glob_iolevel, > DEBUGL, > #Top Generate Globals Decl > glob_max_minutes, > glob_normmax, > glob_curr_iter_when_opt, > glob_dump_analytic, > glob_not_yet_start_msg, > glob_not_yet_finished, > glob_almost_1, > years_in_century, > days_in_year, > glob_subiter_method, > glob_iter, > glob_warned2, > glob_small_float, > glob_max_iter, > glob_large_float, > MAX_UNCHANGED, > glob_max_hours, > glob_hmin, > glob_optimal_done, > glob_percent_done, > glob_log10relerr, > glob_abserr, > glob_log10_abserr, > glob_clock_sec, > glob_dump, > glob_current_iter, > glob_orig_start_sec, > glob_smallish_float, > glob_max_rel_trunc_err, > glob_display_flag, > glob_optimal_expect_sec, > glob_look_poles, > glob_hmax, > min_in_hour, > glob_html_log, > glob_max_sec, > glob_unchanged_h_cnt, > glob_relerr, > glob_hmin_init, > glob_initial_pass, > centuries_in_millinium, > glob_log10normmin, > glob_no_eqs, > glob_max_trunc_err, > glob_clock_start_sec, > djd_debug2, > djd_debug, > glob_log10abserr, > glob_optimal_start, > glob_h, > glob_disp_incr, > glob_max_opt_iter, > glob_start, > glob_optimal_clock_start_sec, > glob_log10_relerr, > glob_last_good_h, > glob_reached_optimal_h, > hours_in_day, > glob_warned, > sec_in_min, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_0D0, > array_const_1, > #END CONST > array_tmp1_a1, > array_1st_rel_error, > array_type_pole, > array_pole, > array_norms, > array_last_rel_error, > array_y_init, > array_tmp0, > array_tmp1, > array_tmp2, > array_m1, > array_y, > array_x, > array_complex_pole, > array_real_pole, > array_y_higher, > array_y_set_initial, > array_y_higher_work2, > array_y_higher_work, > array_poles, > glob_last; > > local kkk, order_d, adj2, temporary, term; > #TOP ATOMALL > #END OUTFILE1 > #BEGIN ATOMHDR1 > #emit pre arcsin $eq_no = 1 > array_tmp1[1] := arcsin(array_x[1]); > array_tmp1_a1[1] := cos(array_tmp1[1]); > #emit pre add $eq_no = 1 i = 1 > array_tmp2[1] := array_const_0D0[1] + array_tmp1[1]; > #emit pre assign xxx $eq_no = 1 i = 1 $min_hdrs = 5 > if not array_y_set_initial[1,2] then # if number 1 > if (1 <= glob_max_terms) then # if number 2 > temporary := array_tmp2[1] * (glob_h ^ (1)) * factorial_3(0,1); > array_y[2] := temporary; > array_y_higher[1,2] := temporary; > temporary := temporary / glob_h * (2.0); > array_y_higher[2,1] := temporary > ; > fi;# end if 2 > ; > fi;# end if 1 > ; > kkk := 2; > #END ATOMHDR1 > #BEGIN ATOMHDR2 > #emit pre arcsin $eq_no = 1 > temp := att(1,array_tmp1_a1,array_tmp1,2); > array_tmp1[2] := (array_x[2] - temp) / array_tmp1_a1[1]; > temp2 := att(1,array_x,array_tmp1,1); > array_tmp1_a1[2] := -temp2; > #emit pre add $eq_no = 1 i = 2 > array_tmp2[2] := array_const_0D0[2] + array_tmp1[2]; > #emit pre assign xxx $eq_no = 1 i = 2 $min_hdrs = 5 > if not array_y_set_initial[1,3] then # if number 1 > if (2 <= glob_max_terms) then # if number 2 > temporary := array_tmp2[2] * (glob_h ^ (1)) * factorial_3(1,2); > array_y[3] := temporary; > array_y_higher[1,3] := temporary; > temporary := temporary / glob_h * (2.0); > array_y_higher[2,2] := temporary > ; > fi;# end if 2 > ; > fi;# end if 1 > ; > kkk := 3; > #END ATOMHDR2 > #BEGIN ATOMHDR3 > #emit pre arcsin $eq_no = 1 > temp := att(2,array_tmp1_a1,array_tmp1,2); > array_tmp1[3] := (array_x[3] - temp) / array_tmp1_a1[1]; > temp2 := att(2,array_x,array_tmp1,1); > array_tmp1_a1[3] := -temp2; > #emit pre add $eq_no = 1 i = 3 > array_tmp2[3] := array_const_0D0[3] + array_tmp1[3]; > #emit pre assign xxx $eq_no = 1 i = 3 $min_hdrs = 5 > if not array_y_set_initial[1,4] then # if number 1 > if (3 <= glob_max_terms) then # if number 2 > temporary := array_tmp2[3] * (glob_h ^ (1)) * factorial_3(2,3); > array_y[4] := temporary; > array_y_higher[1,4] := temporary; > temporary := temporary / glob_h * (2.0); > array_y_higher[2,3] := temporary > ; > fi;# end if 2 > ; > fi;# end if 1 > ; > kkk := 4; > #END ATOMHDR3 > #BEGIN ATOMHDR4 > #emit pre arcsin $eq_no = 1 > temp := att(3,array_tmp1_a1,array_tmp1,2); > array_tmp1[4] := (array_x[4] - temp) / array_tmp1_a1[1]; > temp2 := att(3,array_x,array_tmp1,1); > array_tmp1_a1[4] := -temp2; > #emit pre add $eq_no = 1 i = 4 > array_tmp2[4] := array_const_0D0[4] + array_tmp1[4]; > #emit pre assign xxx $eq_no = 1 i = 4 $min_hdrs = 5 > if not array_y_set_initial[1,5] then # if number 1 > if (4 <= glob_max_terms) then # if number 2 > temporary := array_tmp2[4] * (glob_h ^ (1)) * factorial_3(3,4); > array_y[5] := temporary; > array_y_higher[1,5] := temporary; > temporary := temporary / glob_h * (2.0); > array_y_higher[2,4] := temporary > ; > fi;# end if 2 > ; > fi;# end if 1 > ; > kkk := 5; > #END ATOMHDR4 > #BEGIN ATOMHDR5 > #emit pre arcsin $eq_no = 1 > temp := att(4,array_tmp1_a1,array_tmp1,2); > array_tmp1[5] := (array_x[5] - temp) / array_tmp1_a1[1]; > temp2 := att(4,array_x,array_tmp1,1); > array_tmp1_a1[5] := -temp2; > #emit pre add $eq_no = 1 i = 5 > array_tmp2[5] := array_const_0D0[5] + array_tmp1[5]; > #emit pre assign xxx $eq_no = 1 i = 5 $min_hdrs = 5 > if not array_y_set_initial[1,6] then # if number 1 > if (5 <= glob_max_terms) then # if number 2 > temporary := array_tmp2[5] * (glob_h ^ (1)) * factorial_3(4,5); > array_y[6] := temporary; > array_y_higher[1,6] := temporary; > temporary := temporary / glob_h * (2.0); > array_y_higher[2,5] := temporary > ; > fi;# end if 2 > ; > fi;# end if 1 > ; > kkk := 6; > #END ATOMHDR5 > #BEGIN OUTFILE3 > #Top Atomall While Loop-- outfile3 > while (kkk <= glob_max_terms) do # do number 1 > #END OUTFILE3 > #BEGIN OUTFILE4 > #emit arcsin $eq_no = 1 > temp := att(kkk-1,array_tmp1_a1,array_tmp1,2); > array_tmp1[kkk] := (array_x[kkk] - temp) / array_tmp1_a1[1]; > temp2 := att(kkk-1,array_x,array_tmp1,1); > array_tmp1_a1[kkk] := -temp2; > #emit add $eq_no = 1 > array_tmp2[kkk] := array_const_0D0[kkk] + array_tmp1[kkk]; > #emit assign $eq_no = 1 > order_d := 1; > if (kkk + order_d + 1 <= glob_max_terms) then # if number 1 > if not array_y_set_initial[1,kkk + order_d] then # if number 2 > temporary := array_tmp2[kkk] * (glob_h ^ (order_d)) / factorial_3((kkk - 1),(kkk + order_d - 1)); > array_y[kkk + order_d] := temporary; > array_y_higher[1,kkk + order_d] := temporary; > term := kkk + order_d - 1; > adj2 := 2; > while (adj2 <= order_d + 1) and (term >= 1) do # do number 2 > temporary := temporary / glob_h * convfp(adj2); > array_y_higher[adj2,term] := temporary; > adj2 := adj2 + 1; > term := term - 1; > od;# end do number 2 > fi;# end if 2 > fi;# end if 1 > ; > kkk := kkk + 1; > od;# end do number 1 > ; > #BOTTOM ATOMALL > #END OUTFILE4 > #BEGIN OUTFILE5 > # End Function number 8 > end; Warning, `temp` is implicitly declared local to procedure `atomall` Warning, `temp2` is implicitly declared local to procedure `atomall` atomall := proc() local kkk, order_d, adj2, temporary, term, temp, temp2; global INFO, ALWAYS, glob_max_terms, DEBUGMASSIVE, glob_iolevel, DEBUGL, glob_max_minutes, glob_normmax, glob_curr_iter_when_opt, glob_dump_analytic, glob_not_yet_start_msg, glob_not_yet_finished, glob_almost_1, years_in_century, days_in_year, glob_subiter_method, glob_iter, glob_warned2, glob_small_float, glob_max_iter, glob_large_float, MAX_UNCHANGED, glob_max_hours, glob_hmin, glob_optimal_done, glob_percent_done, glob_log10relerr, glob_abserr, glob_log10_abserr, glob_clock_sec, glob_dump, glob_current_iter, glob_orig_start_sec, glob_smallish_float, glob_max_rel_trunc_err, glob_display_flag, glob_optimal_expect_sec, glob_look_poles, glob_hmax, min_in_hour, glob_html_log, glob_max_sec, glob_unchanged_h_cnt, glob_relerr, glob_hmin_init, glob_initial_pass, centuries_in_millinium, glob_log10normmin, glob_no_eqs, glob_max_trunc_err, glob_clock_start_sec, djd_debug2, djd_debug, glob_log10abserr, glob_optimal_start, glob_h, glob_disp_incr, glob_max_opt_iter, glob_start, glob_optimal_clock_start_sec, glob_log10_relerr, glob_last_good_h, glob_reached_optimal_h, hours_in_day, glob_warned, sec_in_min, array_const_0D0, array_const_1, array_tmp1_a1, array_1st_rel_error, array_type_pole, array_pole, array_norms, array_last_rel_error, array_y_init, array_tmp0, array_tmp1, array_tmp2, array_m1, array_y, array_x, array_complex_pole, array_real_pole, array_y_higher, array_y_set_initial, array_y_higher_work2, array_y_higher_work, array_poles, glob_last; array_tmp1[1] := arcsin(array_x[1]); array_tmp1_a1[1] := cos(array_tmp1[1]); array_tmp2[1] := array_const_0D0[1] + array_tmp1[1]; if not array_y_set_initial[1, 2] then if 1 <= glob_max_terms then temporary := array_tmp2[1]*glob_h*factorial_3(0, 1); array_y[2] := temporary; array_y_higher[1, 2] := temporary; temporary := temporary*2.0/glob_h; array_y_higher[2, 1] := temporary end if end if; kkk := 2; temp := att(1, array_tmp1_a1, array_tmp1, 2); array_tmp1[2] := (array_x[2] - temp)/array_tmp1_a1[1]; temp2 := att(1, array_x, array_tmp1, 1); array_tmp1_a1[2] := -temp2; array_tmp2[2] := array_const_0D0[2] + array_tmp1[2]; if not array_y_set_initial[1, 3] then if 2 <= glob_max_terms then temporary := array_tmp2[2]*glob_h*factorial_3(1, 2); array_y[3] := temporary; array_y_higher[1, 3] := temporary; temporary := temporary*2.0/glob_h; array_y_higher[2, 2] := temporary end if end if; kkk := 3; temp := att(2, array_tmp1_a1, array_tmp1, 2); array_tmp1[3] := (array_x[3] - temp)/array_tmp1_a1[1]; temp2 := att(2, array_x, array_tmp1, 1); array_tmp1_a1[3] := -temp2; array_tmp2[3] := array_const_0D0[3] + array_tmp1[3]; if not array_y_set_initial[1, 4] then if 3 <= glob_max_terms then temporary := array_tmp2[3]*glob_h*factorial_3(2, 3); array_y[4] := temporary; array_y_higher[1, 4] := temporary; temporary := temporary*2.0/glob_h; array_y_higher[2, 3] := temporary end if end if; kkk := 4; temp := att(3, array_tmp1_a1, array_tmp1, 2); array_tmp1[4] := (array_x[4] - temp)/array_tmp1_a1[1]; temp2 := att(3, array_x, array_tmp1, 1); array_tmp1_a1[4] := -temp2; array_tmp2[4] := array_const_0D0[4] + array_tmp1[4]; if not array_y_set_initial[1, 5] then if 4 <= glob_max_terms then temporary := array_tmp2[4]*glob_h*factorial_3(3, 4); array_y[5] := temporary; array_y_higher[1, 5] := temporary; temporary := temporary*2.0/glob_h; array_y_higher[2, 4] := temporary end if end if; kkk := 5; temp := att(4, array_tmp1_a1, array_tmp1, 2); array_tmp1[5] := (array_x[5] - temp)/array_tmp1_a1[1]; temp2 := att(4, array_x, array_tmp1, 1); array_tmp1_a1[5] := -temp2; array_tmp2[5] := array_const_0D0[5] + array_tmp1[5]; if not array_y_set_initial[1, 6] then if 5 <= glob_max_terms then temporary := array_tmp2[5]*glob_h*factorial_3(4, 5); array_y[6] := temporary; array_y_higher[1, 6] := temporary; temporary := temporary*2.0/glob_h; array_y_higher[2, 5] := temporary end if end if; kkk := 6; while kkk <= glob_max_terms do temp := att(kkk - 1, array_tmp1_a1, array_tmp1, 2); array_tmp1[kkk] := (array_x[kkk] - temp)/array_tmp1_a1[1]; temp2 := att(kkk - 1, array_x, array_tmp1, 1); array_tmp1_a1[kkk] := -temp2; array_tmp2[kkk] := array_const_0D0[kkk] + array_tmp1[kkk]; order_d := 1; if kkk + order_d + 1 <= glob_max_terms then if not array_y_set_initial[1, kkk + order_d] then temporary := array_tmp2[kkk]*glob_h^order_d/ factorial_3(kkk - 1, kkk + order_d - 1); array_y[kkk + order_d] := temporary; array_y_higher[1, kkk + order_d] := temporary; term := kkk + order_d - 1; adj2 := 2; while adj2 <= order_d + 1 and 1 <= term do temporary := temporary*convfp(adj2)/glob_h; array_y_higher[adj2, term] := temporary; adj2 := adj2 + 1; term := term - 1 end do end if end if; kkk := kkk + 1 end do end proc > #BEGIN ATS LIBRARY BLOCK > omniout_str := proc(iolevel,str) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > printf("%s\n",str); > fi; > # End Function number 1 > end; omniout_str := proc(iolevel, str) global glob_iolevel; if iolevel <= glob_iolevel then printf("%s\n", str) end if end proc > omniout_str_noeol := proc(iolevel,str) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > printf("%s",str); > fi; > # End Function number 1 > end; omniout_str_noeol := proc(iolevel, str) global glob_iolevel; if iolevel <= glob_iolevel then printf("%s", str) end if end proc > omniout_labstr := proc(iolevel,label,str) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > print(label,str); > fi; > # End Function number 1 > end; omniout_labstr := proc(iolevel, label, str) global glob_iolevel; if iolevel <= glob_iolevel then print(label, str) end if end proc > omniout_float := proc(iolevel,prelabel,prelen,value,vallen,postlabel) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > if vallen = 4 then > printf("%-30s = %-42.4g %s \n",prelabel,value, postlabel); > else > printf("%-30s = %-42.32g %s \n",prelabel,value, postlabel); > fi; > fi; > # End Function number 1 > end; omniout_float := proc(iolevel, prelabel, prelen, value, vallen, postlabel) global glob_iolevel; if iolevel <= glob_iolevel then if vallen = 4 then printf("%-30s = %-42.4g %s \n", prelabel, value, postlabel) else printf("%-30s = %-42.32g %s \n", prelabel, value, postlabel) end if end if end proc > omniout_int := proc(iolevel,prelabel,prelen,value,vallen,postlabel) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > if vallen = 5 then > printf("%-30s = %-32d %s\n",prelabel,value, postlabel); > else > printf("%-30s = %-32d %s \n",prelabel,value, postlabel); > fi; > fi; > # End Function number 1 > end; omniout_int := proc(iolevel, prelabel, prelen, value, vallen, postlabel) global glob_iolevel; if iolevel <= glob_iolevel then if vallen = 5 then printf("%-30s = %-32d %s\n", prelabel, value, postlabel) else printf("%-30s = %-32d %s \n", prelabel, value, postlabel) end if end if end proc > omniout_float_arr := proc(iolevel,prelabel,elemnt,prelen,value,vallen,postlabel) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > print(prelabel,"[",elemnt,"]",value, postlabel); > fi; > # End Function number 1 > end; omniout_float_arr := proc( iolevel, prelabel, elemnt, prelen, value, vallen, postlabel) global glob_iolevel; if iolevel <= glob_iolevel then print(prelabel, "[", elemnt, "]", value, postlabel) end if end proc > dump_series := proc(iolevel,dump_label,series_name, > array_series,numb) > global glob_iolevel; > local i; > if (glob_iolevel >= iolevel) then > i := 1; > while (i <= numb) do > print(dump_label,series_name > ,i,array_series[i]); > i := i + 1; > od; > fi; > # End Function number 1 > end; dump_series := proc(iolevel, dump_label, series_name, array_series, numb) local i; global glob_iolevel; if iolevel <= glob_iolevel then i := 1; while i <= numb do print(dump_label, series_name, i, array_series[i]); i := i + 1 end do end if end proc > dump_series_2 := proc(iolevel,dump_label,series_name2, > array_series2,numb,subnum,array_x) > global glob_iolevel; > local i,sub,ts_term; > if (glob_iolevel >= iolevel) then > sub := 1; > while (sub <= subnum) do > i := 1; > while (i <= numb) do > print(dump_label,series_name2,sub,i,array_series2[sub,i]); > od; > sub := sub + 1; > od; > fi; > # End Function number 1 > end; dump_series_2 := proc( iolevel, dump_label, series_name2, array_series2, numb, subnum, array_x) local i, sub, ts_term; global glob_iolevel; if iolevel <= glob_iolevel then sub := 1; while sub <= subnum do i := 1; while i <= numb do print(dump_label, series_name2, sub, i, array_series2[sub, i]) end do; sub := sub + 1 end do end if end proc > cs_info := proc(iolevel,str) > global glob_iolevel,glob_correct_start_flag,glob_h,glob_reached_optimal_h; > if (glob_iolevel >= iolevel) then > print("cs_info " , str , " glob_correct_start_flag = " , glob_correct_start_flag , "glob_h := " , glob_h , "glob_reached_optimal_h := " , glob_reached_optimal_h) > fi; > # End Function number 1 > end; cs_info := proc(iolevel, str) global glob_iolevel, glob_correct_start_flag, glob_h, glob_reached_optimal_h; if iolevel <= glob_iolevel then print("cs_info ", str, " glob_correct_start_flag = ", glob_correct_start_flag, "glob_h := ", glob_h, "glob_reached_optimal_h := ", glob_reached_optimal_h) end if end proc > # Begin Function number 2 > logitem_time := proc(fd,secs_in) > global centuries_in_millinium, days_in_year, hours_in_day, min_in_hour, sec_in_min, years_in_century; > local cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int; > secs := (secs_in); > if (secs > 0.0) then # if number 1 > sec_in_millinium := convfloat(sec_in_min * min_in_hour * hours_in_day * days_in_year * years_in_century * centuries_in_millinium); > milliniums := convfloat(secs / sec_in_millinium); > millinium_int := floor(milliniums); > centuries := (milliniums - millinium_int)*centuries_in_millinium; > cent_int := floor(centuries); > years := (centuries - cent_int) * years_in_century; > years_int := floor(years); > days := (years - years_int) * days_in_year; > days_int := floor(days); > hours := (days - days_int) * hours_in_day; > hours_int := floor(hours); > minutes := (hours - hours_int) * min_in_hour; > minutes_int := floor(minutes); > seconds := (minutes - minutes_int) * sec_in_min; > sec_int := floor(seconds); > fprintf(fd,""); > if (millinium_int > 0) then # if number 2 > fprintf(fd,"%d Millinia %d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds",millinium_int,cent_int,years_int,days_int,hours_int,minutes_int,sec_int); > elif (cent_int > 0) then # if number 3 > fprintf(fd,"%d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds",cent_int,years_int,days_int,hours_int,minutes_int,sec_int); > elif (years_int > 0) then # if number 4 > fprintf(fd,"%d Years %d Days %d Hours %d Minutes %d Seconds",years_int,days_int,hours_int,minutes_int,sec_int); > elif (days_int > 0) then # if number 5 > fprintf(fd,"%d Days %d Hours %d Minutes %d Seconds",days_int,hours_int,minutes_int,sec_int); > elif (hours_int > 0) then # if number 6 > fprintf(fd,"%d Hours %d Minutes %d Seconds",hours_int,minutes_int,sec_int); > elif (minutes_int > 0) then # if number 7 > fprintf(fd,"%d Minutes %d Seconds",minutes_int,sec_int); > else > fprintf(fd,"%d Seconds",sec_int); > fi;# end if 7 > else > fprintf(fd,"Unknown"); > fi;# end if 6 > fprintf(fd,""); > # End Function number 2 > end; logitem_time := proc(fd, secs_in) local cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int; global centuries_in_millinium, days_in_year, hours_in_day, min_in_hour, sec_in_min, years_in_century; secs := secs_in; if 0. < secs then sec_in_millinium := convfloat(sec_in_min*min_in_hour*hours_in_day* days_in_year*years_in_century*centuries_in_millinium); milliniums := convfloat(secs/sec_in_millinium); millinium_int := floor(milliniums); centuries := (milliniums - millinium_int)*centuries_in_millinium; cent_int := floor(centuries); years := (centuries - cent_int)*years_in_century; years_int := floor(years); days := (years - years_int)*days_in_year; days_int := floor(days); hours := (days - days_int)*hours_in_day; hours_int := floor(hours); minutes := (hours - hours_int)*min_in_hour; minutes_int := floor(minutes); seconds := (minutes - minutes_int)*sec_in_min; sec_int := floor(seconds); fprintf(fd, ""); if 0 < millinium_int then fprintf(fd, "%d Millinia %d Centuries %\ d Years %d Days %d Hours %d Minutes %d Seconds", millinium_int, cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < cent_int then fprintf(fd, "%d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds", cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < years_int then fprintf(fd, "%d Years %d Days %d Hours %d Minutes %d Seconds", years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < days_int then fprintf(fd, "%d Days %d Hours %d Minutes %d Seconds", days_int, hours_int, minutes_int, sec_int) elif 0 < hours_int then fprintf(fd, "%d Hours %d Minutes %d Seconds", hours_int, minutes_int, sec_int) elif 0 < minutes_int then fprintf(fd, "%d Minutes %d Seconds", minutes_int, sec_int) else fprintf(fd, "%d Seconds", sec_int) end if else fprintf(fd, "Unknown") end if; fprintf(fd, "") end proc > omniout_timestr := proc (secs_in) > global centuries_in_millinium, days_in_year, hours_in_day, min_in_hour, sec_in_min, years_in_century; > local cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int; > secs := convfloat(secs_in); > if (secs > 0.0) then # if number 6 > sec_in_millinium := convfloat(sec_in_min * min_in_hour * hours_in_day * days_in_year * years_in_century * centuries_in_millinium); > milliniums := convfloat(secs / sec_in_millinium); > millinium_int := floor(milliniums); > centuries := (milliniums - millinium_int)*centuries_in_millinium; > cent_int := floor(centuries); > years := (centuries - cent_int) * years_in_century; > years_int := floor(years); > days := (years - years_int) * days_in_year; > days_int := floor(days); > hours := (days - days_int) * hours_in_day; > hours_int := floor(hours); > minutes := (hours - hours_int) * min_in_hour; > minutes_int := floor(minutes); > seconds := (minutes - minutes_int) * sec_in_min; > sec_int := floor(seconds); > > if (millinium_int > 0) then # if number 7 > printf(" = %d Millinia %d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds\n",millinium_int,cent_int,years_int,days_int,hours_int,minutes_int,sec_int); > elif (cent_int > 0) then # if number 8 > printf(" = %d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds\n",cent_int,years_int,days_int,hours_int,minutes_int,sec_int); > elif (years_int > 0) then # if number 9 > printf(" = %d Years %d Days %d Hours %d Minutes %d Seconds\n",years_int,days_int,hours_int,minutes_int,sec_int); > elif (days_int > 0) then # if number 10 > printf(" = %d Days %d Hours %d Minutes %d Seconds\n",days_int,hours_int,minutes_int,sec_int); > elif (hours_int > 0) then # if number 11 > printf(" = %d Hours %d Minutes %d Seconds\n",hours_int,minutes_int,sec_int); > elif (minutes_int > 0) then # if number 12 > printf(" = %d Minutes %d Seconds\n",minutes_int,sec_int); > else > printf(" = %d Seconds\n",sec_int); > fi;# end if 12 > else > printf(" Unknown\n"); > fi;# end if 11 > # End Function number 2 > end; omniout_timestr := proc(secs_in) local cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int; global centuries_in_millinium, days_in_year, hours_in_day, min_in_hour, sec_in_min, years_in_century; secs := convfloat(secs_in); if 0. < secs then sec_in_millinium := convfloat(sec_in_min*min_in_hour*hours_in_day* days_in_year*years_in_century*centuries_in_millinium); milliniums := convfloat(secs/sec_in_millinium); millinium_int := floor(milliniums); centuries := (milliniums - millinium_int)*centuries_in_millinium; cent_int := floor(centuries); years := (centuries - cent_int)*years_in_century; years_int := floor(years); days := (years - years_int)*days_in_year; days_int := floor(days); hours := (days - days_int)*hours_in_day; hours_int := floor(hours); minutes := (hours - hours_int)*min_in_hour; minutes_int := floor(minutes); seconds := (minutes - minutes_int)*sec_in_min; sec_int := floor(seconds); if 0 < millinium_int then printf(" = %d Millinia %d Centuries %d\ Years %d Days %d Hours %d Minutes %d Seconds\n", millinium_int, cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < cent_int then printf(" = %d Centuries %d Years %d Days \ %d Hours %d Minutes %d Seconds\n", cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < years_int then printf( " = %d Years %d Days %d Hours %d Minutes %d Seconds\n", years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < days_int then printf( " = %d Days %d Hours %d Minutes %d Seconds\n", days_int, hours_int, minutes_int, sec_int) elif 0 < hours_int then printf( " = %d Hours %d Minutes %d Seconds\n", hours_int, minutes_int, sec_int) elif 0 < minutes_int then printf(" = %d Minutes %d Seconds\n", minutes_int, sec_int) else printf(" = %d Seconds\n", sec_int) end if else printf(" Unknown\n") end if end proc > > # Begin Function number 3 > ats := proc( > mmm_ats,array_a,array_b,jjj_ats) > local iii_ats, lll_ats,ma_ats, ret_ats; > ret_ats := 0.0; > if (jjj_ats <= mmm_ats) then # if number 11 > ma_ats := mmm_ats + 1; > iii_ats := jjj_ats; > while (iii_ats <= mmm_ats) do # do number 1 > lll_ats := ma_ats - iii_ats; > ret_ats := ret_ats + array_a[iii_ats]*array_b[lll_ats]; > iii_ats := iii_ats + 1; > od;# end do number 1 > fi;# end if 11 > ; > ret_ats > # End Function number 3 > end; ats := proc(mmm_ats, array_a, array_b, jjj_ats) local iii_ats, lll_ats, ma_ats, ret_ats; ret_ats := 0.; if jjj_ats <= mmm_ats then ma_ats := mmm_ats + 1; iii_ats := jjj_ats; while iii_ats <= mmm_ats do lll_ats := ma_ats - iii_ats; ret_ats := ret_ats + array_a[iii_ats]*array_b[lll_ats]; iii_ats := iii_ats + 1 end do end if; ret_ats end proc > > # Begin Function number 4 > att := proc( > mmm_att,array_aa,array_bb,jjj_att) > global glob_max_terms; > local al_att, iii_att,lll_att, ma_att, ret_att; > ret_att := 0.0; > if (jjj_att <= mmm_att) then # if number 11 > ma_att := mmm_att + 2; > iii_att := jjj_att; > while (iii_att <= mmm_att) do # do number 1 > lll_att := ma_att - iii_att; > al_att := (lll_att - 1); > if (lll_att <= glob_max_terms) then # if number 12 > ret_att := ret_att + array_aa[iii_att]*array_bb[lll_att]* convfp(al_att); > fi;# end if 12 > ; > iii_att := iii_att + 1; > od;# end do number 1 > ; > ret_att := ret_att / convfp(mmm_att) ; > fi;# end if 11 > ; > ret_att; > # End Function number 4 > end; att := proc(mmm_att, array_aa, array_bb, jjj_att) local al_att, iii_att, lll_att, ma_att, ret_att; global glob_max_terms; ret_att := 0.; if jjj_att <= mmm_att then ma_att := mmm_att + 2; iii_att := jjj_att; while iii_att <= mmm_att do lll_att := ma_att - iii_att; al_att := lll_att - 1; if lll_att <= glob_max_terms then ret_att := ret_att + array_aa[iii_att]*array_bb[lll_att]*convfp(al_att) end if; iii_att := iii_att + 1 end do; ret_att := ret_att/convfp(mmm_att) end if; ret_att end proc > # Begin Function number 5 > display_pole := proc() > global ALWAYS,glob_display_flag, glob_large_float, array_pole; > if ((array_pole[1] <> glob_large_float) and (array_pole[1] > 0.0) and (array_pole[2] <> glob_large_float) and (array_pole[2]> 0.0) and glob_display_flag) then # if number 11 > omniout_float(ALWAYS,"Radius of convergence ",4, array_pole[1],4," "); > omniout_float(ALWAYS,"Order of pole ",4, array_pole[2],4," "); > fi;# end if 11 > # End Function number 5 > end; display_pole := proc() global ALWAYS, glob_display_flag, glob_large_float, array_pole; if array_pole[1] <> glob_large_float and 0. < array_pole[1] and array_pole[2] <> glob_large_float and 0. < array_pole[2] and glob_display_flag then omniout_float(ALWAYS, "Radius of convergence ", 4, array_pole[1], 4, " "); omniout_float(ALWAYS, "Order of pole ", 4, array_pole[2], 4, " ") end if end proc > # Begin Function number 6 > logditto := proc(file) > fprintf(file,""); > fprintf(file,"ditto"); > fprintf(file,""); > # End Function number 6 > end; logditto := proc(file) fprintf(file, ""); fprintf(file, "ditto"); fprintf(file, "") end proc > # Begin Function number 7 > logitem_integer := proc(file,n) > fprintf(file,""); > fprintf(file,"%d",n); > fprintf(file,""); > # End Function number 7 > end; logitem_integer := proc(file, n) fprintf(file, ""); fprintf(file, "%d", n); fprintf(file, "") end proc > # Begin Function number 8 > logitem_str := proc(file,str) > fprintf(file,""); > fprintf(file,str); > fprintf(file,""); > # End Function number 8 > end; logitem_str := proc(file, str) fprintf(file, ""); fprintf(file, str); fprintf(file, "") end proc > # Begin Function number 9 > log_revs := proc(file,revs) > fprintf(file,revs); > # End Function number 9 > end; log_revs := proc(file, revs) fprintf(file, revs) end proc > # Begin Function number 10 > logitem_float := proc(file,x) > fprintf(file,""); > fprintf(file,"%g",x); > fprintf(file,""); > # End Function number 10 > end; logitem_float := proc(file, x) fprintf(file, ""); fprintf(file, "%g", x); fprintf(file, "") end proc > # Begin Function number 11 > logitem_pole := proc(file,pole) > fprintf(file,""); > if pole = 0 then # if number 11 > fprintf(file,"NA"); > elif pole = 1 then # if number 12 > fprintf(file,"Real"); > elif pole = 2 then # if number 13 > fprintf(file,"Complex"); > else > fprintf(file,"No Pole"); > fi;# end if 13 > fprintf(file,""); > # End Function number 11 > end; logitem_pole := proc(file, pole) fprintf(file, ""); if pole = 0 then fprintf(file, "NA") elif pole = 1 then fprintf(file, "Real") elif pole = 2 then fprintf(file, "Complex") else fprintf(file, "No Pole") end if; fprintf(file, "") end proc > # Begin Function number 12 > logstart := proc(file) > fprintf(file,""); > # End Function number 12 > end; logstart := proc(file) fprintf(file, "") end proc > # Begin Function number 13 > logend := proc(file) > fprintf(file,"\n"); > # End Function number 13 > end; logend := proc(file) fprintf(file, "\n") end proc > # Begin Function number 14 > chk_data := proc() > global glob_max_iter,ALWAYS, glob_max_terms; > local errflag; > errflag := false; > > if ((glob_max_terms < 15) or (glob_max_terms > 512)) then # if number 13 > omniout_str(ALWAYS,"Illegal max_terms = -- Using 30"); > glob_max_terms := 30; > fi;# end if 13 > ; > if (glob_max_iter < 2) then # if number 13 > omniout_str(ALWAYS,"Illegal max_iter"); > errflag := true; > fi;# end if 13 > ; > if (errflag) then # if number 13 > > quit; > fi;# end if 13 > # End Function number 14 > end; chk_data := proc() local errflag; global glob_max_iter, ALWAYS, glob_max_terms; errflag := false; if glob_max_terms < 15 or 512 < glob_max_terms then omniout_str(ALWAYS, "Illegal max_terms = -- Using 30"); glob_max_terms := 30 end if; if glob_max_iter < 2 then omniout_str(ALWAYS, "Illegal max_iter"); errflag := true end if; if errflag then quit end if end proc > > # Begin Function number 15 > comp_expect_sec := proc(t_end2,t_start2,t2,clock_sec) > global glob_small_float; > local ms2, rrr, sec_left, sub1, sub2; > ; > ms2 := clock_sec; > sub1 := (t_end2-t_start2); > sub2 := (t2-t_start2); > if (sub1 = 0.0) then # if number 13 > sec_left := 0.0; > else > if (abs(sub2) > 0.0) then # if number 14 > rrr := (sub1/sub2); > sec_left := rrr * ms2 - ms2; > else > sec_left := 0.0; > fi;# end if 14 > fi;# end if 13 > ; > sec_left; > # End Function number 15 > end; comp_expect_sec := proc(t_end2, t_start2, t2, clock_sec) local ms2, rrr, sec_left, sub1, sub2; global glob_small_float; ms2 := clock_sec; sub1 := t_end2 - t_start2; sub2 := t2 - t_start2; if sub1 = 0. then sec_left := 0. else if 0. < abs(sub2) then rrr := sub1/sub2; sec_left := rrr*ms2 - ms2 else sec_left := 0. end if end if; sec_left end proc > > # Begin Function number 16 > comp_percent := proc(t_end2,t_start2,t2) > global glob_small_float; > local rrr, sub1, sub2; > sub1 := (t_end2-t_start2); > sub2 := (t2-t_start2); > if (abs(sub2) > glob_small_float) then # if number 13 > rrr := (100.0*sub2)/sub1; > else > rrr := 0.0; > fi;# end if 13 > ; > rrr > # End Function number 16 > end; comp_percent := proc(t_end2, t_start2, t2) local rrr, sub1, sub2; global glob_small_float; sub1 := t_end2 - t_start2; sub2 := t2 - t_start2; if glob_small_float < abs(sub2) then rrr := 100.0*sub2/sub1 else rrr := 0. end if; rrr end proc > > # Begin Function number 17 > factorial_1 := proc(nnn) > nnn!; > > # End Function number 17 > end; factorial_1 := proc(nnn) nnn! end proc > > # Begin Function number 18 > factorial_3 := proc(mmm2,nnn2) > (mmm2!)/(nnn2!); > > # End Function number 18 > end; factorial_3 := proc(mmm2, nnn2) mmm2!/nnn2! end proc > # Begin Function number 19 > convfp := proc(mmm) > (mmm); > > # End Function number 19 > end; convfp := proc(mmm) mmm end proc > # Begin Function number 20 > convfloat := proc(mmm) > (mmm); > > # End Function number 20 > end; convfloat := proc(mmm) mmm end proc > elapsed_time_seconds := proc() > time(); > end; elapsed_time_seconds := proc() time() end proc > > > > #END ATS LIBRARY BLOCK > #BEGIN USER DEF BLOCK > #BEGIN USER DEF BLOCK > exact_soln_y := proc(x) > 2.0 + x*arcsin(x)+sqrt(1.0-x*x); > end; exact_soln_y := proc(x) 2.0 + x*arcsin(x) + sqrt(1.0 - x*x) end proc > > #END USER DEF BLOCK > #END USER DEF BLOCK > #END OUTFILE5 > # Begin Function number 2 > mainprog := proc() > #BEGIN OUTFIEMAIN > local d1,d2,d3,d4,est_err_2,niii,done_once, > term,ord,order_diff,term_no,html_log_file, > rows,r_order,sub_iter,calc_term,iii,temp_sum,current_iter, > x_start,x_end > ,it, log10norm, max_terms, opt_iter, tmp; > #Top Generate Globals Definition > #Bottom Generate Globals Deninition > global > INFO, > ALWAYS, > glob_max_terms, > DEBUGMASSIVE, > glob_iolevel, > DEBUGL, > #Top Generate Globals Decl > glob_max_minutes, > glob_normmax, > glob_curr_iter_when_opt, > glob_dump_analytic, > glob_not_yet_start_msg, > glob_not_yet_finished, > glob_almost_1, > years_in_century, > days_in_year, > glob_subiter_method, > glob_iter, > glob_warned2, > glob_small_float, > glob_max_iter, > glob_large_float, > MAX_UNCHANGED, > glob_max_hours, > glob_hmin, > glob_optimal_done, > glob_percent_done, > glob_log10relerr, > glob_abserr, > glob_log10_abserr, > glob_clock_sec, > glob_dump, > glob_current_iter, > glob_orig_start_sec, > glob_smallish_float, > glob_max_rel_trunc_err, > glob_display_flag, > glob_optimal_expect_sec, > glob_look_poles, > glob_hmax, > min_in_hour, > glob_html_log, > glob_max_sec, > glob_unchanged_h_cnt, > glob_relerr, > glob_hmin_init, > glob_initial_pass, > centuries_in_millinium, > glob_log10normmin, > glob_no_eqs, > glob_max_trunc_err, > glob_clock_start_sec, > djd_debug2, > djd_debug, > glob_log10abserr, > glob_optimal_start, > glob_h, > glob_disp_incr, > glob_max_opt_iter, > glob_start, > glob_optimal_clock_start_sec, > glob_log10_relerr, > glob_last_good_h, > glob_reached_optimal_h, > hours_in_day, > glob_warned, > sec_in_min, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_0D0, > array_const_1, > #END CONST > array_tmp1_a1, > array_1st_rel_error, > array_type_pole, > array_pole, > array_norms, > array_last_rel_error, > array_y_init, > array_tmp0, > array_tmp1, > array_tmp2, > array_m1, > array_y, > array_x, > array_complex_pole, > array_real_pole, > array_y_higher, > array_y_set_initial, > array_y_higher_work2, > array_y_higher_work, > array_poles, > glob_last; > glob_last; > ALWAYS := 1; > INFO := 2; > DEBUGL := 3; > DEBUGMASSIVE := 4; > glob_iolevel := INFO; > INFO := 2; > ALWAYS := 1; > glob_max_terms := 30; > DEBUGMASSIVE := 4; > glob_iolevel := 5; > DEBUGL := 3; > glob_max_minutes := 0.0; > glob_normmax := 0.0; > glob_curr_iter_when_opt := 0; > glob_dump_analytic := false; > glob_not_yet_start_msg := true; > glob_not_yet_finished := true; > glob_almost_1 := 0.9990; > years_in_century := 100.0; > days_in_year := 365.0; > glob_subiter_method := 3; > glob_iter := 0; > glob_warned2 := false; > glob_small_float := 0.1e-50; > glob_max_iter := 1000; > glob_large_float := 9.0e100; > MAX_UNCHANGED := 10; > glob_max_hours := 0.0; > glob_hmin := 0.00000000001; > glob_optimal_done := false; > glob_percent_done := 0.0; > glob_log10relerr := 0.0; > glob_abserr := 0.1e-10; > glob_log10_abserr := 0.1e-10; > glob_clock_sec := 0.0; > glob_dump := false; > glob_current_iter := 0; > glob_orig_start_sec := 0.0; > glob_smallish_float := 0.1e-100; > glob_max_rel_trunc_err := 0.1e-10; > glob_display_flag := true; > glob_optimal_expect_sec := 0.1; > glob_look_poles := false; > glob_hmax := 1.0; > min_in_hour := 60.0; > glob_html_log := true; > glob_max_sec := 10000.0; > glob_unchanged_h_cnt := 0; > glob_relerr := 0.1e-10; > glob_hmin_init := 0.001; > glob_initial_pass := true; > centuries_in_millinium := 10.0; > glob_log10normmin := 0.1; > glob_no_eqs := 0; > glob_max_trunc_err := 0.1e-10; > glob_clock_start_sec := 0.0; > djd_debug2 := true; > djd_debug := true; > glob_log10abserr := 0.0; > glob_optimal_start := 0.0; > glob_h := 0.1; > glob_disp_incr := 0.1; > glob_max_opt_iter := 10; > glob_start := 0; > glob_optimal_clock_start_sec := 0.0; > glob_log10_relerr := 0.1e-10; > glob_last_good_h := 0.1; > glob_reached_optimal_h := false; > hours_in_day := 24.0; > glob_warned := false; > sec_in_min := 60.0; > #Write Set Defaults > glob_orig_start_sec := elapsed_time_seconds(); > MAX_UNCHANGED := 10; > glob_curr_iter_when_opt := 0; > glob_display_flag := true; > glob_no_eqs := 1; > glob_iter := -1; > opt_iter := -1; > glob_max_iter := 50000; > glob_max_hours := 0.0; > glob_max_minutes := 15.0; > omniout_str(ALWAYS,"##############ECHO OF PROBLEM#################"); > omniout_str(ALWAYS,"##############temp/arcsinpostode.ode#################"); > omniout_str(ALWAYS,"diff ( y , x , 1 ) = arcsin ( x ) ;"); > omniout_str(ALWAYS,"!"); > omniout_str(ALWAYS,"#BEGIN FIRST INPUT BLOCK"); > omniout_str(ALWAYS,"max_terms := 30;"); > omniout_str(ALWAYS,"Digits := 32;"); > omniout_str(ALWAYS,"!"); > omniout_str(ALWAYS,"#END FIRST INPUT BLOCK"); > omniout_str(ALWAYS,"#BEGIN SECOND INPUT BLOCK"); > omniout_str(ALWAYS,"x_start := -0.8;"); > omniout_str(ALWAYS,"x_end := 0.8 ;"); > omniout_str(ALWAYS,"array_y_init[0 + 1] := exact_soln_y(x_start);"); > omniout_str(ALWAYS,"glob_h := 0.00001 ;"); > omniout_str(ALWAYS,"glob_look_poles := true;"); > omniout_str(ALWAYS,"glob_max_iter := 100;"); > omniout_str(ALWAYS,"#END SECOND INPUT BLOCK"); > omniout_str(ALWAYS,"#BEGIN OVERRIDE BLOCK"); > omniout_str(ALWAYS,"glob_h := 0.0001 ;"); > omniout_str(ALWAYS,"glob_look_poles := true;"); > omniout_str(ALWAYS,"glob_max_iter := 100;"); > omniout_str(ALWAYS,"glob_max_minutes := 15;"); > omniout_str(ALWAYS,"#END OVERRIDE BLOCK"); > omniout_str(ALWAYS,"!"); > omniout_str(ALWAYS,"#BEGIN USER DEF BLOCK"); > omniout_str(ALWAYS,"exact_soln_y := proc(x)"); > omniout_str(ALWAYS,"2.0 + x*arcsin(x)+sqrt(1.0-x*x);"); > omniout_str(ALWAYS,"end;"); > omniout_str(ALWAYS,""); > omniout_str(ALWAYS,"#END USER DEF BLOCK"); > omniout_str(ALWAYS,"#######END OF ECHO OF PROBLEM#################"); > glob_unchanged_h_cnt := 0; > glob_warned := false; > glob_warned2 := false; > glob_small_float := 1.0e-200; > glob_smallish_float := 1.0e-64; > glob_large_float := 1.0e100; > glob_almost_1 := 0.99; > glob_log10_abserr := -8.0; > glob_log10_relerr := -8.0; > glob_hmax := 0.01; > #BEGIN FIRST INPUT BLOCK > #BEGIN FIRST INPUT BLOCK > max_terms := 30; > Digits := 32; > #END FIRST INPUT BLOCK > #START OF INITS AFTER INPUT BLOCK > glob_max_terms := max_terms; > glob_html_log := true; > #END OF INITS AFTER INPUT BLOCK > array_tmp1_a1:= Array(1..(max_terms + 1),[]); > array_1st_rel_error:= Array(1..(max_terms + 1),[]); > array_type_pole:= Array(1..(max_terms + 1),[]); > array_pole:= Array(1..(max_terms + 1),[]); > array_norms:= Array(1..(max_terms + 1),[]); > array_last_rel_error:= Array(1..(max_terms + 1),[]); > array_y_init:= Array(1..(max_terms + 1),[]); > array_tmp0:= Array(1..(max_terms + 1),[]); > array_tmp1:= Array(1..(max_terms + 1),[]); > array_tmp2:= Array(1..(max_terms + 1),[]); > array_m1:= Array(1..(max_terms + 1),[]); > array_y:= Array(1..(max_terms + 1),[]); > array_x:= Array(1..(max_terms + 1),[]); > array_complex_pole := Array(1..(1+ 1) ,(1..3+ 1),[]); > array_real_pole := Array(1..(1+ 1) ,(1..3+ 1),[]); > array_y_higher := Array(1..(2+ 1) ,(1..max_terms+ 1),[]); > array_y_set_initial := Array(1..(2+ 1) ,(1..max_terms+ 1),[]); > array_y_higher_work2 := Array(1..(2+ 1) ,(1..max_terms+ 1),[]); > array_y_higher_work := Array(1..(2+ 1) ,(1..max_terms+ 1),[]); > array_poles := Array(1..(1+ 1) ,(1..3+ 1),[]); > term := 1; > while term <= max_terms do # do number 2 > array_tmp1_a1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_1st_rel_error[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_type_pole[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_pole[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_norms[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_last_rel_error[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_y_init[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp0[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp2[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_m1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_y[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_x[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=1 do # do number 2 > term := 1; > while term <= 3 do # do number 3 > array_complex_pole[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=1 do # do number 2 > term := 1; > while term <= 3 do # do number 3 > array_real_pole[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=2 do # do number 2 > term := 1; > while term <= max_terms do # do number 3 > array_y_higher[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=2 do # do number 2 > term := 1; > while term <= max_terms do # do number 3 > array_y_set_initial[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=2 do # do number 2 > term := 1; > while term <= max_terms do # do number 3 > array_y_higher_work2[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=2 do # do number 2 > term := 1; > while term <= max_terms do # do number 3 > array_y_higher_work[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=1 do # do number 2 > term := 1; > while term <= 3 do # do number 3 > array_poles[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > #BEGIN ARRAYS DEFINED AND INITIALIZATED > array_tmp1_a1 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp1_a1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp2 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp2[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp1 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp0 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp0[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_x := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_x[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_y := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_y[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_0D0 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_const_0D0[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_0D0[1] := 0.0; > array_const_1 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_const_1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_1[1] := 1; > array_m1 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms do # do number 2 > array_m1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_m1[1] := -1.0; > #END ARRAYS DEFINED AND INITIALIZATED > #TOP SECOND INPUT BLOCK > #BEGIN SECOND INPUT BLOCK > #END FIRST INPUT BLOCK > #BEGIN SECOND INPUT BLOCK > x_start := -0.8; > x_end := 0.8 ; > array_y_init[0 + 1] := exact_soln_y(x_start); > glob_h := 0.00001 ; > glob_look_poles := true; > glob_max_iter := 100; > #END SECOND INPUT BLOCK > #BEGIN OVERRIDE BLOCK > glob_h := 0.0001 ; > glob_look_poles := true; > glob_max_iter := 100; > glob_max_minutes := 15; > #END OVERRIDE BLOCK > #END SECOND INPUT BLOCK > #BEGIN INITS AFTER SECOND INPUT BLOCK > glob_last_good_h := glob_h; > glob_max_terms := max_terms; > glob_max_sec := convfloat(60.0) * convfloat(glob_max_minutes) + convfloat(3600.0) * convfloat(glob_max_hours); > glob_abserr := 10.0 ^ (glob_log10_abserr); > glob_relerr := 10.0 ^ (glob_log10_relerr); > chk_data(); > #AFTER INITS AFTER SECOND INPUT BLOCK > array_y_set_initial[1,1] := true; > array_y_set_initial[1,2] := false; > array_y_set_initial[1,3] := false; > array_y_set_initial[1,4] := false; > array_y_set_initial[1,5] := false; > array_y_set_initial[1,6] := false; > array_y_set_initial[1,7] := false; > array_y_set_initial[1,8] := false; > array_y_set_initial[1,9] := false; > array_y_set_initial[1,10] := false; > array_y_set_initial[1,11] := false; > array_y_set_initial[1,12] := false; > array_y_set_initial[1,13] := false; > array_y_set_initial[1,14] := false; > array_y_set_initial[1,15] := false; > array_y_set_initial[1,16] := false; > array_y_set_initial[1,17] := false; > array_y_set_initial[1,18] := false; > array_y_set_initial[1,19] := false; > array_y_set_initial[1,20] := false; > array_y_set_initial[1,21] := false; > array_y_set_initial[1,22] := false; > array_y_set_initial[1,23] := false; > array_y_set_initial[1,24] := false; > array_y_set_initial[1,25] := false; > array_y_set_initial[1,26] := false; > array_y_set_initial[1,27] := false; > array_y_set_initial[1,28] := false; > array_y_set_initial[1,29] := false; > array_y_set_initial[1,30] := false; > if glob_html_log then # if number 2 > html_log_file := fopen("html/entry.html",WRITE,TEXT); > fi;# end if 2 > ; > #BEGIN SOLUTION CODE > omniout_str(ALWAYS,"START of Soultion"); > #Start Series -- INITIALIZE FOR SOLUTION > array_x[1] := x_start; > array_x[2] := glob_h; > order_diff := 1; > #Start Series array_y > term_no := 1; > while (term_no <= order_diff) do # do number 2 > array_y[term_no] := array_y_init[term_no] * glob_h ^ (term_no - 1) / factorial_1(term_no - 1); > term_no := term_no + 1; > od;# end do number 2 > ; > rows := order_diff; > r_order := 1; > while (r_order <= rows) do # do number 2 > term_no := 1; > while (term_no <= (rows - r_order + 1)) do # do number 3 > it := term_no + r_order - 1; > array_y_higher[r_order,term_no] := array_y_init[it]* (glob_h ^ (term_no - 1)) / ((factorial_1(term_no - 1))); > term_no := term_no + 1; > od;# end do number 3 > ; > r_order := r_order + 1; > od;# end do number 2 > ; > current_iter := 1; > glob_clock_start_sec := elapsed_time_seconds(); > start_array_y(); > if (abs(array_y_higher[1,1]) > glob_small_float) then # if number 2 > tmp := abs(array_y_higher[1,1]); > log10norm := (log10(tmp)); > if (log10norm < glob_log10normmin) then # if number 3 > glob_log10normmin := log10norm; > fi;# end if 3 > fi;# end if 2 > ; > display_alot(current_iter) > ; > glob_clock_sec := elapsed_time_seconds(); > glob_current_iter := 0; > glob_iter := 0; > omniout_str(DEBUGL," "); > glob_reached_optimal_h := true; > glob_optimal_clock_start_sec := elapsed_time_seconds(); > while ((glob_current_iter < glob_max_iter) and (array_x[1] <= x_end ) and ((convfloat(glob_clock_sec) - convfloat(glob_orig_start_sec)) < convfloat(glob_max_sec))) do # do number 2 > #left paren 0001C > omniout_str(INFO," "); > omniout_str(INFO,"TOP MAIN SOLVE Loop"); > glob_iter := glob_iter + 1; > glob_clock_sec := elapsed_time_seconds(); > glob_current_iter := glob_current_iter + 1; > atomall(); > if (glob_look_poles) then # if number 2 > #left paren 0004C > check_for_pole(); > fi;# end if 2 > ;#was right paren 0004C > array_x[1] := array_x[1] + glob_h; > array_x[2] := glob_h; > #Jump Series array_y > order_diff := 1; > #START PART 1 SUM AND ADJUST > #START SUM AND ADJUST EQ =1 > #sum_and_adjust array_y > #BEFORE ADJUST SUBSERIES EQ =1 > ord := 2; > calc_term := 1; > #adjust_subseriesarray_y > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_y_higher_work[2,iii] := array_y_higher[2,iii] / (glob_h ^ (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =1 > #BEFORE SUM SUBSERIES EQ =1 > temp_sum := 0.0; > ord := 2; > calc_term := 1; > #sum_subseriesarray_y > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_y_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_y_higher_work2[ord,calc_term] := temp_sum * (glob_h ^ (calc_term - 1)) / (convfp(calc_term - 1)!); > #AFTER SUM SUBSERIES EQ =1 > #BEFORE ADJUST SUBSERIES EQ =1 > ord := 1; > calc_term := 2; > #adjust_subseriesarray_y > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_y_higher_work[1,iii] := array_y_higher[1,iii] / (glob_h ^ (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =1 > #BEFORE SUM SUBSERIES EQ =1 > temp_sum := 0.0; > ord := 1; > calc_term := 2; > #sum_subseriesarray_y > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_y_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_y_higher_work2[ord,calc_term] := temp_sum * (glob_h ^ (calc_term - 1)) / (convfp(calc_term - 1)!); > #AFTER SUM SUBSERIES EQ =1 > #BEFORE ADJUST SUBSERIES EQ =1 > ord := 1; > calc_term := 1; > #adjust_subseriesarray_y > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_y_higher_work[1,iii] := array_y_higher[1,iii] / (glob_h ^ (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =1 > #BEFORE SUM SUBSERIES EQ =1 > temp_sum := 0.0; > ord := 1; > calc_term := 1; > #sum_subseriesarray_y > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_y_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_y_higher_work2[ord,calc_term] := temp_sum * (glob_h ^ (calc_term - 1)) / (convfp(calc_term - 1)!); > #AFTER SUM SUBSERIES EQ =1 > #END SUM AND ADJUST EQ =1 > #END PART 1 > #START PART 2 MOVE TERMS to REGULAR Array > term_no := glob_max_terms; > while (term_no >= 1) do # do number 3 > array_y[term_no] := array_y_higher_work2[1,term_no]; > ord := 1; > while ord <= order_diff do # do number 4 > array_y_higher[ord,term_no] := array_y_higher_work2[ord,term_no]; > ord := ord + 1; > od;# end do number 4 > ; > term_no := term_no - 1; > od;# end do number 3 > ; > #END PART 2 HEVE MOVED TERMS to REGULAR Array > display_alot(current_iter) > ; > od;# end do number 2 > ;#right paren 0001C > omniout_str(ALWAYS,"Finished!"); > if (glob_iter >= glob_max_iter) then # if number 2 > omniout_str(ALWAYS,"Maximum Iterations Reached before Solution Completed!") > fi;# end if 2 > ; > if (elapsed_time_seconds() - convfloat(glob_orig_start_sec) >= convfloat(glob_max_sec )) then # if number 2 > omniout_str(ALWAYS,"Maximum Time Reached before Solution Completed!") > fi;# end if 2 > ; > glob_clock_sec := elapsed_time_seconds(); > omniout_str(INFO,"diff ( y , x , 1 ) = arcsin ( x ) ;"); > omniout_int(INFO,"Iterations ",32,glob_iter,4," ") > ; > prog_report(x_start,x_end); > if glob_html_log then # if number 2 > logstart(html_log_file); > logitem_str(html_log_file,"2012-06-13T01:27:19-05:00") > ; > logitem_str(html_log_file,"Maple") > ; > logitem_str(html_log_file,"arcsin") > ; > logitem_str(html_log_file,"diff ( y , x , 1 ) = arcsin ( x ) ;") > ; > logitem_float(html_log_file,x_start) > ; > logitem_float(html_log_file,x_end) > ; > logitem_float(html_log_file,array_x[1]) > ; > logitem_float(html_log_file,glob_h) > ; > logitem_integer(html_log_file,Digits) > ; > ; > logitem_integer(html_log_file,glob_max_terms) > ; > logitem_float(html_log_file,array_1st_rel_error[1]) > ; > logitem_float(html_log_file,array_last_rel_error[1]) > ; > logitem_integer(html_log_file,glob_iter) > ; > logitem_pole(html_log_file,array_type_pole[1]) > ; > if array_type_pole[1] = 1 or array_type_pole[1] = 2 then # if number 3 > logitem_float(html_log_file,array_pole[1]) > ; > logitem_float(html_log_file,array_pole[2]) > ; > 0; > else > logitem_str(html_log_file,"NA") > ; > logitem_str(html_log_file,"NA") > ; > 0; > fi;# end if 3 > ; > logitem_time(html_log_file,convfloat(glob_clock_sec)) > ; > if glob_percent_done < 100.0 then # if number 3 > logitem_time(html_log_file,convfloat(glob_optimal_expect_sec)) > ; > 0 > else > logitem_str(html_log_file,"Done") > ; > 0 > fi;# end if 3 > ; > log_revs(html_log_file," 090 ") > ; > logitem_str(html_log_file,"arcsin diffeq.mxt") > ; > logitem_str(html_log_file,"arcsin maple results") > ; > logitem_str(html_log_file,"Test of revised logic - mostly affecting systems of eqs") > ; > logend(html_log_file) > ; > ; > fi;# end if 2 > ; > if glob_html_log then # if number 2 > fclose(html_log_file); > fi;# end if 2 > ; > ;; > #END OUTFILEMAIN > # End Function number 8 > end; mainprog := proc() local d1, d2, d3, d4, est_err_2, niii, done_once, term, ord, order_diff, term_no, html_log_file, rows, r_order, sub_iter, calc_term, iii, temp_sum, current_iter, x_start, x_end, it, log10norm, max_terms, opt_iter, tmp; global INFO, ALWAYS, glob_max_terms, DEBUGMASSIVE, glob_iolevel, DEBUGL, glob_max_minutes, glob_normmax, glob_curr_iter_when_opt, glob_dump_analytic, glob_not_yet_start_msg, glob_not_yet_finished, glob_almost_1, years_in_century, days_in_year, glob_subiter_method, glob_iter, glob_warned2, glob_small_float, glob_max_iter, glob_large_float, MAX_UNCHANGED, glob_max_hours, glob_hmin, glob_optimal_done, glob_percent_done, glob_log10relerr, glob_abserr, glob_log10_abserr, glob_clock_sec, glob_dump, glob_current_iter, glob_orig_start_sec, glob_smallish_float, glob_max_rel_trunc_err, glob_display_flag, glob_optimal_expect_sec, glob_look_poles, glob_hmax, min_in_hour, glob_html_log, glob_max_sec, glob_unchanged_h_cnt, glob_relerr, glob_hmin_init, glob_initial_pass, centuries_in_millinium, glob_log10normmin, glob_no_eqs, glob_max_trunc_err, glob_clock_start_sec, djd_debug2, djd_debug, glob_log10abserr, glob_optimal_start, glob_h, glob_disp_incr, glob_max_opt_iter, glob_start, glob_optimal_clock_start_sec, glob_log10_relerr, glob_last_good_h, glob_reached_optimal_h, hours_in_day, glob_warned, sec_in_min, array_const_0D0, array_const_1, array_tmp1_a1, array_1st_rel_error, array_type_pole, array_pole, array_norms, array_last_rel_error, array_y_init, array_tmp0, array_tmp1, array_tmp2, array_m1, array_y, array_x, array_complex_pole, array_real_pole, array_y_higher, array_y_set_initial, array_y_higher_work2, array_y_higher_work, array_poles, glob_last; glob_last; ALWAYS := 1; INFO := 2; DEBUGL := 3; DEBUGMASSIVE := 4; glob_iolevel := INFO; INFO := 2; ALWAYS := 1; glob_max_terms := 30; DEBUGMASSIVE := 4; glob_iolevel := 5; DEBUGL := 3; glob_max_minutes := 0.; glob_normmax := 0.; glob_curr_iter_when_opt := 0; glob_dump_analytic := false; glob_not_yet_start_msg := true; glob_not_yet_finished := true; glob_almost_1 := 0.9990; years_in_century := 100.0; days_in_year := 365.0; glob_subiter_method := 3; glob_iter := 0; glob_warned2 := false; glob_small_float := 0.1*10^(-50); glob_max_iter := 1000; glob_large_float := 0.90*10^101; MAX_UNCHANGED := 10; glob_max_hours := 0.; glob_hmin := 0.1*10^(-10); glob_optimal_done := false; glob_percent_done := 0.; glob_log10relerr := 0.; glob_abserr := 0.1*10^(-10); glob_log10_abserr := 0.1*10^(-10); glob_clock_sec := 0.; glob_dump := false; glob_current_iter := 0; glob_orig_start_sec := 0.; glob_smallish_float := 0.1*10^(-100); glob_max_rel_trunc_err := 0.1*10^(-10); glob_display_flag := true; glob_optimal_expect_sec := 0.1; glob_look_poles := false; glob_hmax := 1.0; min_in_hour := 60.0; glob_html_log := true; glob_max_sec := 10000.0; glob_unchanged_h_cnt := 0; glob_relerr := 0.1*10^(-10); glob_hmin_init := 0.001; glob_initial_pass := true; centuries_in_millinium := 10.0; glob_log10normmin := 0.1; glob_no_eqs := 0; glob_max_trunc_err := 0.1*10^(-10); glob_clock_start_sec := 0.; djd_debug2 := true; djd_debug := true; glob_log10abserr := 0.; glob_optimal_start := 0.; glob_h := 0.1; glob_disp_incr := 0.1; glob_max_opt_iter := 10; glob_start := 0; glob_optimal_clock_start_sec := 0.; glob_log10_relerr := 0.1*10^(-10); glob_last_good_h := 0.1; glob_reached_optimal_h := false; hours_in_day := 24.0; glob_warned := false; sec_in_min := 60.0; glob_orig_start_sec := elapsed_time_seconds(); MAX_UNCHANGED := 10; glob_curr_iter_when_opt := 0; glob_display_flag := true; glob_no_eqs := 1; glob_iter := -1; opt_iter := -1; glob_max_iter := 50000; glob_max_hours := 0.; glob_max_minutes := 15.0; omniout_str(ALWAYS, "##############ECHO OF PROBLEM#################"); omniout_str(ALWAYS, "##############temp/arcsinpostode.ode#################"); omniout_str(ALWAYS, "diff ( y , x , 1 ) = arcsin ( x ) ;"); omniout_str(ALWAYS, "!"); omniout_str(ALWAYS, "#BEGIN FIRST INPUT BLOCK"); omniout_str(ALWAYS, "max_terms := 30;"); omniout_str(ALWAYS, "Digits := 32;"); omniout_str(ALWAYS, "!"); omniout_str(ALWAYS, "#END FIRST INPUT BLOCK"); omniout_str(ALWAYS, "#BEGIN SECOND INPUT BLOCK"); omniout_str(ALWAYS, "x_start := -0.8;"); omniout_str(ALWAYS, "x_end := 0.8 ;"); omniout_str(ALWAYS, "array_y_init[0 + 1] := exact_soln_y(x_start);"); omniout_str(ALWAYS, "glob_h := 0.00001 ;"); omniout_str(ALWAYS, "glob_look_poles := true;"); omniout_str(ALWAYS, "glob_max_iter := 100;"); omniout_str(ALWAYS, "#END SECOND INPUT BLOCK"); omniout_str(ALWAYS, "#BEGIN OVERRIDE BLOCK"); omniout_str(ALWAYS, "glob_h := 0.0001 ;"); omniout_str(ALWAYS, "glob_look_poles := true;"); omniout_str(ALWAYS, "glob_max_iter := 100;"); omniout_str(ALWAYS, "glob_max_minutes := 15;"); omniout_str(ALWAYS, "#END OVERRIDE BLOCK"); omniout_str(ALWAYS, "!"); omniout_str(ALWAYS, "#BEGIN USER DEF BLOCK"); omniout_str(ALWAYS, "exact_soln_y := proc(x)"); omniout_str(ALWAYS, "2.0 + x*arcsin(x)+sqrt(1.0-x*x);"); omniout_str(ALWAYS, "end;"); omniout_str(ALWAYS, ""); omniout_str(ALWAYS, "#END USER DEF BLOCK"); omniout_str(ALWAYS, "#######END OF ECHO OF PROBLEM#################"); glob_unchanged_h_cnt := 0; glob_warned := false; glob_warned2 := false; glob_small_float := 0.10*10^(-199); glob_smallish_float := 0.10*10^(-63); glob_large_float := 0.10*10^101; glob_almost_1 := 0.99; glob_log10_abserr := -8.0; glob_log10_relerr := -8.0; glob_hmax := 0.01; max_terms := 30; Digits := 32; glob_max_terms := max_terms; glob_html_log := true; array_tmp1_a1 := Array(1 .. max_terms + 1, []); array_1st_rel_error := Array(1 .. max_terms + 1, []); array_type_pole := Array(1 .. max_terms + 1, []); array_pole := Array(1 .. max_terms + 1, []); array_norms := Array(1 .. max_terms + 1, []); array_last_rel_error := Array(1 .. max_terms + 1, []); array_y_init := Array(1 .. max_terms + 1, []); array_tmp0 := Array(1 .. max_terms + 1, []); array_tmp1 := Array(1 .. max_terms + 1, []); array_tmp2 := Array(1 .. max_terms + 1, []); array_m1 := Array(1 .. max_terms + 1, []); array_y := Array(1 .. max_terms + 1, []); array_x := Array(1 .. max_terms + 1, []); array_complex_pole := Array(1 .. 2, 1 .. 4, []); array_real_pole := Array(1 .. 2, 1 .. 4, []); array_y_higher := Array(1 .. 3, 1 .. max_terms + 1, []); array_y_set_initial := Array(1 .. 3, 1 .. max_terms + 1, []); array_y_higher_work2 := Array(1 .. 3, 1 .. max_terms + 1, []); array_y_higher_work := Array(1 .. 3, 1 .. max_terms + 1, []); array_poles := Array(1 .. 2, 1 .. 4, []); term := 1; while term <= max_terms do array_tmp1_a1[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_1st_rel_error[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_type_pole[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_pole[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_norms[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_last_rel_error[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_y_init[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp0[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp1[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp2[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_m1[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_y[term] := 0.; term := term + 1 end do ; term := 1; while term <= max_terms do array_x[term] := 0.; term := term + 1 end do ; ord := 1; while ord <= 1 do term := 1; while term <= 3 do array_complex_pole[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 1 do term := 1; while term <= 3 do array_real_pole[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 2 do term := 1; while term <= max_terms do array_y_higher[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 2 do term := 1; while term <= max_terms do array_y_set_initial[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 2 do term := 1; while term <= max_terms do array_y_higher_work2[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 2 do term := 1; while term <= max_terms do array_y_higher_work[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 1 do term := 1; while term <= 3 do array_poles[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; array_tmp1_a1 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp1_a1[term] := 0.; term := term + 1 end do; array_tmp2 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp2[term] := 0.; term := term + 1 end do; array_tmp1 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp1[term] := 0.; term := term + 1 end do; array_tmp0 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp0[term] := 0.; term := term + 1 end do; array_x := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_x[term] := 0.; term := term + 1 end do; array_y := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_y[term] := 0.; term := term + 1 end do; array_const_0D0 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_const_0D0[term] := 0.; term := term + 1 end do; array_const_0D0[1] := 0.; array_const_1 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_const_1[term] := 0.; term := term + 1 end do; array_const_1[1] := 1; array_m1 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms do array_m1[term] := 0.; term := term + 1 end do; array_m1[1] := -1.0; x_start := -0.8; x_end := 0.8; array_y_init[1] := exact_soln_y(x_start); glob_h := 0.00001; glob_look_poles := true; glob_max_iter := 100; glob_h := 0.0001; glob_look_poles := true; glob_max_iter := 100; glob_max_minutes := 15; glob_last_good_h := glob_h; glob_max_terms := max_terms; glob_max_sec := convfloat(60.0)*convfloat(glob_max_minutes) + convfloat(3600.0)*convfloat(glob_max_hours); glob_abserr := 10.0^glob_log10_abserr; glob_relerr := 10.0^glob_log10_relerr; chk_data(); array_y_set_initial[1, 1] := true; array_y_set_initial[1, 2] := false; array_y_set_initial[1, 3] := false; array_y_set_initial[1, 4] := false; array_y_set_initial[1, 5] := false; array_y_set_initial[1, 6] := false; array_y_set_initial[1, 7] := false; array_y_set_initial[1, 8] := false; array_y_set_initial[1, 9] := false; array_y_set_initial[1, 10] := false; array_y_set_initial[1, 11] := false; array_y_set_initial[1, 12] := false; array_y_set_initial[1, 13] := false; array_y_set_initial[1, 14] := false; array_y_set_initial[1, 15] := false; array_y_set_initial[1, 16] := false; array_y_set_initial[1, 17] := false; array_y_set_initial[1, 18] := false; array_y_set_initial[1, 19] := false; array_y_set_initial[1, 20] := false; array_y_set_initial[1, 21] := false; array_y_set_initial[1, 22] := false; array_y_set_initial[1, 23] := false; array_y_set_initial[1, 24] := false; array_y_set_initial[1, 25] := false; array_y_set_initial[1, 26] := false; array_y_set_initial[1, 27] := false; array_y_set_initial[1, 28] := false; array_y_set_initial[1, 29] := false; array_y_set_initial[1, 30] := false; if glob_html_log then html_log_file := fopen("html/entry.html", WRITE, TEXT) end if; omniout_str(ALWAYS, "START of Soultion"); array_x[1] := x_start; array_x[2] := glob_h; order_diff := 1; term_no := 1; while term_no <= order_diff do array_y[term_no] := array_y_init[term_no]*glob_h^(term_no - 1)/ factorial_1(term_no - 1); term_no := term_no + 1 end do; rows := order_diff; r_order := 1; while r_order <= rows do term_no := 1; while term_no <= rows - r_order + 1 do it := term_no + r_order - 1; array_y_higher[r_order, term_no] := array_y_init[it]* glob_h^(term_no - 1)/factorial_1(term_no - 1); term_no := term_no + 1 end do; r_order := r_order + 1 end do; current_iter := 1; glob_clock_start_sec := elapsed_time_seconds(); start_array_y(); if glob_small_float < abs(array_y_higher[1, 1]) then tmp := abs(array_y_higher[1, 1]); log10norm := log10(tmp); if log10norm < glob_log10normmin then glob_log10normmin := log10norm end if end if; display_alot(current_iter); glob_clock_sec := elapsed_time_seconds(); glob_current_iter := 0; glob_iter := 0; omniout_str(DEBUGL, " "); glob_reached_optimal_h := true; glob_optimal_clock_start_sec := elapsed_time_seconds(); while glob_current_iter < glob_max_iter and array_x[1] <= x_end and convfloat(glob_clock_sec) - convfloat(glob_orig_start_sec) < convfloat(glob_max_sec) do omniout_str(INFO, " "); omniout_str(INFO, "TOP MAIN SOLVE Loop"); glob_iter := glob_iter + 1; glob_clock_sec := elapsed_time_seconds(); glob_current_iter := glob_current_iter + 1; atomall(); if glob_look_poles then check_for_pole() end if; array_x[1] := array_x[1] + glob_h; array_x[2] := glob_h; order_diff := 1; ord := 2; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do array_y_higher_work[2, iii] := array_y_higher[2, iii]/( glob_h^(calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; temp_sum := 0.; ord := 2; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_y_higher_work[ord, iii]; iii := iii - 1 end do; array_y_higher_work2[ord, calc_term] := temp_sum*glob_h^(calc_term - 1)/convfp(calc_term - 1)!; ord := 1; calc_term := 2; iii := glob_max_terms; while calc_term <= iii do array_y_higher_work[1, iii] := array_y_higher[1, iii]/( glob_h^(calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; temp_sum := 0.; ord := 1; calc_term := 2; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_y_higher_work[ord, iii]; iii := iii - 1 end do; array_y_higher_work2[ord, calc_term] := temp_sum*glob_h^(calc_term - 1)/convfp(calc_term - 1)!; ord := 1; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do array_y_higher_work[1, iii] := array_y_higher[1, iii]/( glob_h^(calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; temp_sum := 0.; ord := 1; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_y_higher_work[ord, iii]; iii := iii - 1 end do; array_y_higher_work2[ord, calc_term] := temp_sum*glob_h^(calc_term - 1)/convfp(calc_term - 1)!; term_no := glob_max_terms; while 1 <= term_no do array_y[term_no] := array_y_higher_work2[1, term_no]; ord := 1; while ord <= order_diff do array_y_higher[ord, term_no] := array_y_higher_work2[ord, term_no]; ord := ord + 1 end do; term_no := term_no - 1 end do; display_alot(current_iter) end do; omniout_str(ALWAYS, "Finished!"); if glob_max_iter <= glob_iter then omniout_str(ALWAYS, "Maximum Iterations Reached before Solution Completed!") end if; if convfloat(glob_max_sec) <= elapsed_time_seconds() - convfloat(glob_orig_start_sec) then omniout_str(ALWAYS, "Maximum Time Reached before Solution Completed!") end if; glob_clock_sec := elapsed_time_seconds(); omniout_str(INFO, "diff ( y , x , 1 ) = arcsin ( x ) ;"); omniout_int(INFO, "Iterations ", 32, glob_iter, 4, " "); prog_report(x_start, x_end); if glob_html_log then logstart(html_log_file); logitem_str(html_log_file, "2012-06-13T01:27:19-05:00"); logitem_str(html_log_file, "Maple"); logitem_str(html_log_file, "arcsin") ; logitem_str(html_log_file, "diff ( y , x , 1 ) = arcsin ( x ) ;"); logitem_float(html_log_file, x_start); logitem_float(html_log_file, x_end); logitem_float(html_log_file, array_x[1]); logitem_float(html_log_file, glob_h); logitem_integer(html_log_file, Digits); logitem_integer(html_log_file, glob_max_terms); logitem_float(html_log_file, array_1st_rel_error[1]); logitem_float(html_log_file, array_last_rel_error[1]); logitem_integer(html_log_file, glob_iter); logitem_pole(html_log_file, array_type_pole[1]); if array_type_pole[1] = 1 or array_type_pole[1] = 2 then logitem_float(html_log_file, array_pole[1]); logitem_float(html_log_file, array_pole[2]); 0 else logitem_str(html_log_file, "NA"); logitem_str(html_log_file, "NA"); 0 end if; logitem_time(html_log_file, convfloat(glob_clock_sec)); if glob_percent_done < 100.0 then logitem_time(html_log_file, convfloat(glob_optimal_expect_sec)) ; 0 else logitem_str(html_log_file, "Done"); 0 end if; log_revs(html_log_file, " 090 "); logitem_str(html_log_file, "arcsin diffeq.mxt"); logitem_str(html_log_file, "arcsin maple results"); logitem_str(html_log_file, "Test of revised logic - mostly affecting systems of eqs"); logend(html_log_file) end if; if glob_html_log then fclose(html_log_file) end if end proc > mainprog(); ##############ECHO OF PROBLEM################# ##############temp/arcsinpostode.ode################# diff ( y , x , 1 ) = arcsin ( x ) ; ! #BEGIN FIRST INPUT BLOCK max_terms := 30; Digits := 32; ! #END FIRST INPUT BLOCK #BEGIN SECOND INPUT BLOCK x_start := -0.8; x_end := 0.8 ; array_y_init[0 + 1] := exact_soln_y(x_start); glob_h := 0.00001 ; glob_look_poles := true; glob_max_iter := 100; #END SECOND INPUT BLOCK #BEGIN OVERRIDE BLOCK glob_h := 0.0001 ; glob_look_poles := true; glob_max_iter := 100; glob_max_minutes := 15; #END OVERRIDE BLOCK ! #BEGIN USER DEF BLOCK exact_soln_y := proc(x) 2.0 + x*arcsin(x)+sqrt(1.0-x*x); end; #END USER DEF BLOCK #######END OF ECHO OF PROBLEM################# START of Soultion x[1] = -0.8 y[1] (analytic) = 3.3418361744012897859428099703379 y[1] (numeric) = 3.3418361744012897859428099703379 absolute error = 0 relative error = 0 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7999 y[1] (analytic) = 3.3417434532122057962424955865037 y[1] (numeric) = 3.3417434532122057962428085523225 absolute error = 3.129658188e-22 relative error = 9.3653454605908131660067577669747e-21 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7998 y[1] (analytic) = 3.3416507486860864789792924087229 y[1] (numeric) = 3.3416507486860864789799176362249 absolute error = 6.252275020e-22 relative error = 1.8710139060637472270837775494139e-20 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7997 y[1] (analytic) = 3.341558060819232524015707745155 y[1] (numeric) = 3.3415580608192325240166445321387 absolute error = 9.367869837e-22 relative error = 2.8034436830055641037209630391207e-20 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7996 y[1] (analytic) = 3.3414653896079475459881253780015 y[1] (numeric) = 3.3414653896079475459893730241938 absolute error = 1.2476461923e-21 relative error = 3.7338294635048896927311682430805e-20 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7995 y[1] (analytic) = 3.3413727350485380806534496511133 y[1] (numeric) = 3.3413727350485380806550074581628 absolute error = 1.5578070495e-21 relative error = 4.6621768148155153021986460663303e-20 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7994 y[1] (analytic) = 3.3412800971373135812421472041869 y[1] (numeric) = 3.3412800971373135812440144756581 absolute error = 1.8672714712e-21 relative error = 5.5884912875152544409899982951614e-20 % h = 0.0001 TOP MAIN SOLVE Loop memory used=3.8MB, alloc=2.9MB, time=0.16 NO POLE x[1] = -0.7993 y[1] (analytic) = 3.3411874758705864148176719797034 y[1] (numeric) = 3.34118747587058641481984802107 absolute error = 2.1760413666e-21 relative error = 6.5127784128096743781460803843252e-20 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7992 y[1] (analytic) = 3.3410948712446718586422591681892 y[1] (numeric) = 3.3410948712446718586447432868283 absolute error = 2.4841186391e-21 relative error = 7.4350437052228362292310074813789e-20 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7991 y[1] (analytic) = 3.3410022832558880965490737966899 y[1] (numeric) = 3.3410022832558880965518653018758 absolute error = 2.7915051859e-21 relative error = 8.3552926613974361252373215174432e-20 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.799 y[1] (analytic) = 3.3409097119005562153206997045224 y[1] (numeric) = 3.3409097119005562153237979074202 absolute error = 3.0982028978e-21 relative error = 9.2735307594933876489218720244877e-20 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7989 y[1] (analytic) = 3.3408171571750002010739546894227 y[1] (numeric) = 3.3408171571750002010773589030826 absolute error = 3.4042136599e-21 relative error = 1.0189763461280257471265111331900e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7988 y[1] (analytic) = 3.3407246190755469356510176461336 y[1] (numeric) = 3.3407246190755469356547271854844 absolute error = 3.7095393508e-21 relative error = 1.1103996209740006442857787641915e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7987 y[1] (analytic) = 3.3406320975985261930168535582719 y[1] (numeric) = 3.3406320975985261930208677401151 absolute error = 4.0141818432e-21 relative error = 1.2016234430860157346952304038932e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7986 y[1] (analytic) = 3.3405395927402706356629222429925 y[1] (numeric) = 3.3405395927402706356672403859962 absolute error = 4.3181430037e-21 relative error = 1.2926483533032439454504683838422e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7985 y[1] (analytic) = 3.3404471044971158110171567865128 y[1] (numeric) = 3.3404471044971158110217782112059 absolute error = 4.6214246931e-21 relative error = 1.3834748907948140218898863933535e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7984 memory used=7.6MB, alloc=3.9MB, time=0.34 y[1] (analytic) = 3.3403546328654001478601976469867 y[1] (numeric) = 3.3403546328654001478651216757527 absolute error = 4.9240287660e-21 relative error = 1.4741035929398021271858318769434e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7983 y[1] (analytic) = 3.3402621778414649527478684395163 y[1] (numeric) = 3.3402621778414649527530943965874 absolute error = 5.2259570711e-21 relative error = 1.5645349954167680395254323523224e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7982 y[1] (analytic) = 3.3401697394216544064398794562689 y[1] (numeric) = 3.3401697394216544064454066677199 absolute error = 5.5272114510e-21 relative error = 1.6547696321436133737045831700409e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7981 y[1] (analytic) = 3.3400773176023155603347450127169 y[1] (numeric) = 3.3400773176023155603405728064594 absolute error = 5.8277937425e-21 relative error = 1.7448080353671270929149222600024e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.798 y[1] (analytic) = 3.3399849123797983329109007489534 y[1] (numeric) = 3.3399849123797983329170284547299 absolute error = 6.1277057765e-21 relative error = 1.8346507356327850109560346897664e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7979 y[1] (analytic) = 3.3398925237504555061740070528427 y[1] (numeric) = 3.3398925237504555061804340022206 absolute error = 6.4269493779e-21 relative error = 1.9242982617545444212922151714405e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7978 y[1] (analytic) = 3.3398001517106427221104248094522 y[1] (numeric) = 3.3398001517106427221171503358182 absolute error = 6.7255263660e-21 relative error = 2.0137511409343434117215370137845e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7977 y[1] (analytic) = 3.339707796256718479146849718781 y[1] (numeric) = 3.3397077962567184791538731573349 absolute error = 7.0234385539e-21 relative error = 2.1030098985821927569633426716554e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7976 y[1] (analytic) = 3.3396154573850441286160914612418 y[1] (numeric) = 3.3396154573850441286234121489907 absolute error = 7.3206877489e-21 relative error = 2.1920750584356737720248155572167e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7975 y[1] (analytic) = 3.3395231350919838712289840276799 y[1] (numeric) = 3.3395231350919838712366013034328 absolute error = 7.6172757529e-21 relative error = 2.2809471426794561349094094085025e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7974 y[1] (analytic) = 3.3394308293739047535524135679201 y[1] (numeric) = 3.3394308293739047535603267722817 absolute error = 7.9132043616e-21 relative error = 2.3696266717054929971435355721825e-19 % h = 0.0001 TOP MAIN SOLVE Loop memory used=11.4MB, alloc=4.1MB, time=0.53 NO POLE x[1] = -0.7973 y[1] (analytic) = 3.3393385402271766644934501489124 y[1] (numeric) = 3.3393385402271766645016586242776 absolute error = 8.2084753652e-21 relative error = 2.4581141643223672144379647099849e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7972 y[1] (analytic) = 3.3392462676481723317895698505197 y[1] (numeric) = 3.3392462676481723317980729410676 absolute error = 8.5030905479e-21 relative error = 2.5464101376053099001385413100288e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7971 y[1] (analytic) = 3.3391540116332673185049536638345 y[1] (numeric) = 3.3391540116332673185137507155229 absolute error = 8.7970516884e-21 relative error = 2.6345151070456713003048114801125e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.797 y[1] (analytic) = 3.3390617721788400195328496936448 y[1] (numeric) = 3.3390617721788400195419400542043 absolute error = 9.0903605595e-21 relative error = 2.7224295864308797937344339565583e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7969 y[1] (analytic) = 3.3389695492812716581039852032773 y[1] (numeric) = 3.3389695492812716581133682222061 absolute error = 9.3830189288e-21 relative error = 2.8101540880538240871885856368046e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7968 y[1] (analytic) = 3.3388773429369462823010150765471 y[1] (numeric) = 3.3388773429369462823106901051047 absolute error = 9.6750285576e-21 relative error = 2.8976891223831668834988310559317e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7967 y[1] (analytic) = 3.3387851531422507615789933079129 y[1] (numeric) = 3.3387851531422507615889596991149 absolute error = 9.9663912020e-21 relative error = 2.9850351983925263578313754844747e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7966 y[1] (analytic) = 3.3386929798935747832918541682066 y[1] (numeric) = 3.338692979893574783302111276819 absolute error = 1.02571086124e-20 relative error = 3.0721928234104828611706222347908e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7965 y[1] (analytic) = 3.3386008231873108492248897294466 y[1] (numeric) = 3.33860082318731084923543691198 absolute error = 1.05471825334e-20 relative error = 3.1591625030903715765083887585446e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7964 y[1] (analytic) = 3.3385086830198542721332104682747 y[1] (numeric) = 3.3385086830198542721440470829791 absolute error = 1.08366147044e-20 relative error = 3.2459447415897447674156951341846e-19 % h = 0.0001 TOP MAIN SOLVE Loop memory used=15.2MB, alloc=4.2MB, time=0.72 NO POLE x[1] = -0.7963 y[1] (analytic) = 3.3384165593876031722861757034752 y[1] (numeric) = 3.3384165593876031722973011103341 absolute error = 1.11254068589e-20 relative error = 3.3325400413604577103938284789055e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7962 y[1] (analytic) = 3.3383244522869584740177806588288 y[1] (numeric) = 3.3383244522869584740291942195539 absolute error = 1.14135607251e-20 relative error = 3.4189489033281369141036963371416e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7961 y[1] (analytic) = 3.3382323617143239022829869782471 y[1] (numeric) = 3.3382323617143239022946880562727 absolute error = 1.17010780256e-20 relative error = 3.5051718268020744235144499075800e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.796 y[1] (analytic) = 3.3381402876661059792199835556996 y[1] (numeric) = 3.3381402876661059792319715161769 absolute error = 1.19879604773e-20 relative error = 3.5912093094450209384948486402349e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7959 y[1] (analytic) = 3.3380482301387140207183645779064 y[1] (numeric) = 3.3380482301387140207306387876986 absolute error = 1.22742097922e-20 relative error = 3.6770618475125927005259089033184e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7958 y[1] (analytic) = 3.3379561891285601329932117131178 y[1] (numeric) = 3.3379561891285601330057715407942 absolute error = 1.25598276764e-20 relative error = 3.7627299355534659892049612140909e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7957 y[1] (analytic) = 3.3378641646320592091650674145296 y[1] (numeric) = 3.33786416463205920917791223036 absolute error = 1.28448158304e-20 relative error = 3.8482140664989927554256094925963e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7956 y[1] (analytic) = 3.3377721566456289258457863420082 y[1] (numeric) = 3.3377721566456289258589155179581 absolute error = 1.31291759499e-20 relative error = 3.9335147319026317351911924906735e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7955 y[1] (analytic) = 3.3376801651656897397302519408093 y[1] (numeric) = 3.3376801651656897397436648505341 absolute error = 1.34129097248e-20 relative error = 4.0186324216401225609904704621809e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7954 y[1] (analytic) = 3.3375881901886648841939452508668 y[1] (numeric) = 3.3375881901886648842076412697062 absolute error = 1.36960188394e-20 relative error = 4.1035676239691514756474006354238e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7953 y[1] (analytic) = 3.3374962317109803658963530550202 y[1] (numeric) = 3.3374962317109803659103315599935 absolute error = 1.39785049733e-20 relative error = 4.1883208257987651123080109918160e-19 % h = 0.0001 TOP MAIN SOLVE Loop memory used=19.0MB, alloc=4.3MB, time=0.91 NO POLE x[1] = -0.7952 y[1] (analytic) = 3.3374042897290649613902025092245 y[1] (numeric) = 3.3374042897290649614044628790248 absolute error = 1.42603698003e-20 relative error = 4.2728925123595608183902862461965e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7951 y[1] (analytic) = 3.337312364239350213736509432349 y[1] (numeric) = 3.337312364239350213751051047338 absolute error = 1.45416149890e-20 relative error = 4.3572831673832145196751899846729e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.795 y[1] (analytic) = 3.3372204552382704291254274676328 y[1] (numeric) = 3.3372204552382704291402497098354 absolute error = 1.48222422026e-20 relative error = 4.4414932730423179345742406211006e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7949 y[1] (analytic) = 3.337128562722262673502885362208 y[1] (numeric) = 3.3371285627222626735179876153073 absolute error = 1.51022530993e-20 relative error = 4.5255233100700012632804326588316e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7948 y[1] (analytic) = 3.3370366866877667692029996453422 y[1] (numeric) = 3.337036686687766769218381294674 absolute error = 1.53816493318e-20 relative error = 4.6093737576098754050915356320129e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7947 y[1] (analytic) = 3.3369448271312252915862500201793 y[1] (numeric) = 3.336944827131225291601910452727 absolute error = 1.56604325477e-20 relative error = 4.6930450933356572962000634330414e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7946 y[1] (analytic) = 3.3368529840490835656834048177818 y[1] (numeric) = 3.3368529840490835656993434221711 absolute error = 1.59386043893e-20 relative error = 4.7765377933910049941471521226703e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7945 y[1] (analytic) = 3.336761157437789662845183896188 y[1] (numeric) = 3.3367611574377896628614000626818 absolute error = 1.62161664938e-20 relative error = 4.8598523324492196748200385374958e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7944 y[1] (analytic) = 3.3366693472937943973976464010074 y[1] (numeric) = 3.3366693472937943974141395215005 absolute error = 1.64931204931e-20 relative error = 4.9429891836530775884055735755893e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7943 y[1] (analytic) = 3.3365775536135513233032908377738 y[1] (numeric) = 3.3365775536135513233200603057879 absolute error = 1.67694680141e-20 relative error = 5.0259488187045063572149610845972e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE memory used=22.8MB, alloc=4.3MB, time=1.11 x[1] = -0.7942 y[1] (analytic) = 3.3364857763935167308278549398714 y[1] (numeric) = 3.3364857763935167308449001505496 absolute error = 1.70452106782e-20 relative error = 5.1087317077145029614247587430253e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7941 y[1] (analytic) = 3.3363940156301496432128028493318 y[1] (numeric) = 3.3363940156301496432301231994342 absolute error = 1.73203501024e-20 relative error = 5.1913383195325867439998956328784e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.794 y[1] (analytic) = 3.3363022713199118133534871611866 y[1] (numeric) = 3.3363022713199118133710820490844 absolute error = 1.75948878978e-20 relative error = 5.2737691212970010166079012982434e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7939 y[1] (analytic) = 3.3362105434592677204829734153282 y[1] (numeric) = 3.336210543459267720500842240999 absolute error = 1.78688256708e-20 relative error = 5.3560245787941420101334523497571e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7938 y[1] (analytic) = 3.3361188320446845668615146530084 y[1] (numeric) = 3.3361188320446845668796568180312 absolute error = 1.81421650228e-20 relative error = 5.4381051563684229778480227728047e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7937 y[1] (analytic) = 3.3360271370726322744716636881664 y[1] (numeric) = 3.3360271370726322744900785957163 absolute error = 1.84149075499e-20 relative error = 5.5200113168321235460469095980811e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7936 y[1] (analytic) = 3.3359354585395834817190107767399 y[1] (numeric) = 3.3359354585395834817376978315835 absolute error = 1.86870548436e-20 relative error = 5.6017435216749903099826986572595e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7935 y[1] (analytic) = 3.3358437964420135401385343999722 y[1] (numeric) = 3.3358437964420135401574930084621 absolute error = 1.89586084899e-20 relative error = 5.6833022307942333464373674895392e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7934 y[1] (analytic) = 3.3357521507764005111065529104788 y[1] (numeric) = 3.3357521507764005111257824805488 absolute error = 1.92295700700e-20 relative error = 5.7646879027041302711805943680827e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7933 y[1] (analytic) = 3.3356605215392251625582648224919 y[1] (numeric) = 3.3356605215392251625777647636521 absolute error = 1.94999411602e-20 relative error = 5.8459009945058324134951952821596e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7932 y[1] (analytic) = 3.3355689087269709657108655602467 y[1] (numeric) = 3.3355689087269709657306352835785 absolute error = 1.97697233318e-20 relative error = 5.9269419618571661294177178571022e-19 % h = 0.0001 TOP MAIN SOLVE Loop memory used=26.7MB, alloc=4.3MB, time=1.30 NO POLE x[1] = -0.7931 y[1] (analytic) = 3.3354773123361240917922285109199 y[1] (numeric) = 3.3354773123361240918122674290712 absolute error = 2.00389181513e-20 relative error = 6.0078112590323714055886881277911e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.793 y[1] (analytic) = 3.3353857323631734087751382608756 y[1] (numeric) = 3.3353857323631734087954457880554 absolute error = 2.03075271798e-20 relative error = 6.0885093387419981051504376871471e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7929 y[1] (analytic) = 3.3352941688046104781170639262122 y[1] (numeric) = 3.3352941688046104781376394781864 absolute error = 2.05755519742e-20 relative error = 6.1690366524924551930905886092762e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7928 y[1] (analytic) = 3.335202621656929551505460520752 y[1] (numeric) = 3.3352026216569295515263035148379 absolute error = 2.08429940859e-20 relative error = 6.2493936501960396583040592532803e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7927 y[1] (analytic) = 3.3351110909166275676085863366454 y[1] (numeric) = 3.3351110909166275676296961917071 absolute error = 2.11098550617e-20 relative error = 6.3295807804405495126228978275000e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7926 y[1] (analytic) = 3.3350195765802041488318243447102 y[1] (numeric) = 3.3350195765802041488532004811539 absolute error = 2.13761364437e-20 relative error = 6.4095984904590929943882991336770e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7925 y[1] (analytic) = 3.3349280786441615980794956534599 y[1] (numeric) = 3.3349280786441615981011374932288 absolute error = 2.16418397689e-20 relative error = 6.4894472260099359492816293494914e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7924 y[1] (analytic) = 3.3348365971050048955221530975161 y[1] (numeric) = 3.3348365971050048955440600640855 absolute error = 2.19069665694e-20 relative error = 6.5691274314362484071030862567075e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7923 y[1] (analytic) = 3.3347451319592416953693430577396 y[1] (numeric) = 3.3347451319592416953915145761126 absolute error = 2.21715183730e-20 relative error = 6.6486395498458103082859674981509e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7922 y[1] (analytic) = 3.3346536832033823226478236469579 y[1] (numeric) = 3.3346536832033823226702591436601 absolute error = 2.24354967022e-20 relative error = 6.7279840228109369709032131375095e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7921 y[1] (analytic) = 3.3345622508339397699852274266042 y[1] (numeric) = 3.3345622508339397700079263296793 absolute error = 2.26989030751e-20 relative error = 6.8071612906381452255188462315218e-19 % h = 0.0001 TOP MAIN SOLVE Loop memory used=30.5MB, alloc=4.3MB, time=1.49 NO POLE x[1] = -0.792 y[1] (analytic) = 3.3344708348474296943991568509315 y[1] (numeric) = 3.3344708348474296944221185899364 absolute error = 2.29617390049e-20 relative error = 6.8861717922180073093242715815623e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7919 y[1] (analytic) = 3.3343794352403704140917006667086 y[1] (numeric) = 3.3343794352403704141149246727085 absolute error = 2.32240059999e-20 relative error = 6.9650159650249331112287317415340e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7918 y[1] (analytic) = 3.3342880520092829052493595274522 y[1] (numeric) = 3.3342880520092829052728452330163 absolute error = 2.34857055641e-20 relative error = 7.0436942452969009570488812413788e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7917 y[1] (analytic) = 3.3341966851506907988483691123027 y[1] (numeric) = 3.3341966851506907988721159514992 absolute error = 2.37468391965e-20 relative error = 7.1222070678253190475432021672573e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7916 y[1] (analytic) = 3.3341053346611203774654090706022 y[1] (numeric) = 3.3341053346611203774894164789935 absolute error = 2.40074083913e-20 relative error = 7.2005548660147899361538030045400e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7915 y[1] (analytic) = 3.3340140005371005720936861440908 y[1] (numeric) = 3.3340140005371005721179535587294 absolute error = 2.42674146386e-20 relative error = 7.2787380720928543243546169276599e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7914 y[1] (analytic) = 3.3339226827751629589643798494015 y[1] (numeric) = 3.3339226827751629589889067088246 absolute error = 2.45268594231e-20 relative error = 7.3567571167198755046057069076782e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7913 y[1] (analytic) = 3.3338313813718417563734391341914 y[1] (numeric) = 3.333831381371841756398224878417 absolute error = 2.47857442256e-20 relative error = 7.4346124294387343090048439709687e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7912 y[1] (analytic) = 3.3337400963236738215137184508261 y[1] (numeric) = 3.3337400963236738215387625213478 absolute error = 2.50440705217e-20 relative error = 7.5123044382847005581583054776717e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7911 y[1] (analytic) = 3.3336488276271986473124417219986 y[1] (numeric) = 3.3336488276271986473377435617815 absolute error = 2.53018397829e-20 relative error = 7.5898335701151723776024485197722e-19 % h = 0.0001 TOP MAIN SOLVE Loop memory used=34.3MB, alloc=4.3MB, time=1.68 NO POLE x[1] = -0.791 y[1] (analytic) = 3.3335575752789583592739827030506 y[1] (numeric) = 3.3335575752789583592995417565263 absolute error = 2.55590534757e-20 relative error = 7.6672002503395101546851851823699e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7909 y[1] (analytic) = 3.3334663392754977123279502760436 y[1] (numeric) = 3.3334663392754977123537659891059 absolute error = 2.58157130623e-20 relative error = 7.7444049031288070750327298516526e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7908 y[1] (analytic) = 3.3333751196133640876825672408208 y[1] (numeric) = 3.3333751196133640877086390608212 absolute error = 2.60718200004e-20 relative error = 7.8214479513556976042695505519938e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7907 y[1] (analytic) = 3.3332839162891074896833311983961 y[1] (numeric) = 3.333283916289107489709658574139 absolute error = 2.63273757429e-20 relative error = 7.8983298165041557456276033569885e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7906 y[1] (analytic) = 3.3331927292992805426769461520086 y[1] (numeric) = 3.3331927292992805427035285337468 absolute error = 2.65823817382e-20 relative error = 7.9750509187592861910258423672716e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7905 y[1] (analytic) = 3.3331015586404384878805134810918 y[1] (numeric) = 3.3331015586404384879073503205227 absolute error = 2.68368394309e-20 relative error = 8.0516116772171386661486090595373e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7904 y[1] (analytic) = 3.3330104043091391802559709732258 y[1] (numeric) = 3.3330104043091391802830617234856 absolute error = 2.70907502598e-20 relative error = 8.1280125092844783318502712688715e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7903 y[1] (analytic) = 3.3329192663019430853897686288569 y[1] (numeric) = 3.3329192663019430854171127445175 absolute error = 2.73441156606e-20 relative error = 8.2042538314886329697250732181387e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7902 y[1] (analytic) = 3.3328281446154132763777699832146 y[1] (numeric) = 3.3328281446154132764053669202784 absolute error = 2.75969370638e-20 relative error = 8.2803360588472548785929298362275e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.7901 y[1] (analytic) = 3.3327370392461154307153677193817 y[1] (numeric) = 3.3327370392461154307432169352773 absolute error = 2.78492158956e-20 relative error = 8.3562596051381405036534591003637e-19 % h = 0.0001 TOP MAIN SOLVE Loop NO POLE x[1] = -0.79 y[1] (analytic) = 3.3326459501906178271928023759331 y[1] (numeric) = 3.3326459501906178272209033295109 absolute error = 2.81009535778e-20 relative error = 8.4320248828690325589467015110552e-19 % h = 0.0001 Finished! Maximum Iterations Reached before Solution Completed! diff ( y , x , 1 ) = arcsin ( x ) ; Iterations = 100 Total Elapsed Time = 1 Seconds Elapsed Time(since restart) = 1 Seconds Expected Time Remaining = 4 Minutes 45 Seconds Optimized Time Remaining = 4 Minutes 43 Seconds Time to Timeout = 14 Minutes 58 Seconds Percent Done = 0.6312 % > quit memory used=38.1MB, alloc=4.3MB, time=1.85