|\^/| Maple 12 (IBM INTEL LINUX) ._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2008 \ MAPLE / All rights reserved. Maple is a trademark of <____ ____> Waterloo Maple Inc. | Type ? for help. > #BEGIN OUTFILE1 > > # Begin Function number 3 > display_alot := proc(iter) > global > ALWAYS, > INFO, > glob_max_terms, > DEBUGMASSIVE, > DEBUGL, > glob_iolevel, > #Top Generate Globals Decl > glob_log10abserr, > glob_orig_start_sec, > glob_smallish_float, > glob_max_trunc_err, > glob_last_good_h, > glob_disp_incr, > glob_reached_optimal_h, > glob_initial_pass, > sec_in_min, > glob_clock_start_sec, > glob_clock_sec, > min_in_hour, > djd_debug, > glob_max_minutes, > glob_iter, > glob_start, > glob_max_iter, > glob_max_hours, > glob_relerr, > glob_abserr, > glob_log10_abserr, > glob_small_float, > glob_optimal_clock_start_sec, > glob_not_yet_finished, > glob_display_flag, > glob_warned, > glob_optimal_start, > glob_hmin, > glob_max_opt_iter, > glob_percent_done, > glob_normmax, > glob_max_sec, > glob_look_poles, > glob_optimal_done, > glob_almost_1, > years_in_century, > days_in_year, > glob_optimal_expect_sec, > glob_max_order, > glob_hmax, > glob_html_log, > glob_unchanged_h_cnt, > centuries_in_millinium, > glob_current_iter, > glob_curr_iter_when_opt, > glob_max_rel_trunc_err, > glob_log10_relerr, > glob_not_yet_start_msg, > hours_in_day, > glob_dump, > glob_warned2, > glob_dump_analytic, > glob_hmin_init, > glob_h, > glob_log10normmin, > glob_log10relerr, > MAX_UNCHANGED, > glob_no_eqs, > glob_large_float, > djd_debug2, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_3D0, > array_const_4D0, > array_const_0D0, > array_const_1, > array_const_2, > array_const_2D0, > #END CONST > array_pole, > array_norms, > array_1st_rel_error, > array_x1_init, > array_m1, > array_x2, > array_x1, > array_tmp10, > array_tmp11, > array_tmp12, > array_tmp13, > array_tmp14, > array_tmp15, > array_tmp16, > array_tmp17, > array_type_pole, > array_x2_init, > array_t, > array_last_rel_error, > array_tmp0, > array_tmp1, > array_tmp2, > array_tmp3, > array_tmp4, > array_tmp5, > array_tmp6, > array_tmp7, > array_tmp8, > array_tmp9, > array_x2_higher_work2, > array_x1_higher_work, > array_x2_higher_work, > array_poles, > array_real_pole, > array_x2_higher, > array_complex_pole, > array_x1_higher_work2, > array_x1_higher, > glob_last; > > local abserr, analytic_val_y, ind_var, numeric_val, relerr, term_no; > #TOP DISPLAY ALOT > if (iter >= 0) then # if number 1 > ind_var := array_t[1]; > omniout_float(ALWAYS,"t[1] ",33,ind_var,20," "); > analytic_val_y := exact_soln_x2(ind_var); > omniout_float(ALWAYS,"x2[1] (analytic) ",33,analytic_val_y,20," "); > term_no := 1; > numeric_val := array_x2[term_no]; > abserr := abs(numeric_val - analytic_val_y); > omniout_float(ALWAYS,"x2[1] (numeric) ",33,numeric_val,20," "); > if (abs(analytic_val_y) <> 0.0) then # if number 2 > relerr := abserr*100.0/abs(analytic_val_y); > else > relerr := -1.0 ; > fi;# end if 2 > ; > if glob_iter = 1 then # if number 2 > array_1st_rel_error[1] := relerr; > else > array_last_rel_error[1] := relerr; > fi;# end if 2 > ; > omniout_float(ALWAYS,"absolute error ",4,abserr,20," "); > omniout_float(ALWAYS,"relative error ",4,relerr,20,"%"); > omniout_float(ALWAYS,"h ",4,glob_h,20," "); > ; > analytic_val_y := exact_soln_x1(ind_var); > omniout_float(ALWAYS,"x1[1] (analytic) ",33,analytic_val_y,20," "); > term_no := 1; > numeric_val := array_x1[term_no]; > abserr := abs(numeric_val - analytic_val_y); > omniout_float(ALWAYS,"x1[1] (numeric) ",33,numeric_val,20," "); > if (abs(analytic_val_y) <> 0.0) then # if number 2 > relerr := abserr*100.0/abs(analytic_val_y); > else > relerr := -1.0 ; > fi;# end if 2 > ; > if glob_iter = 1 then # if number 2 > array_1st_rel_error[2] := relerr; > else > array_last_rel_error[2] := relerr; > fi;# end if 2 > ; > omniout_float(ALWAYS,"absolute error ",4,abserr,20," "); > omniout_float(ALWAYS,"relative error ",4,relerr,20,"%"); > omniout_float(ALWAYS,"h ",4,glob_h,20," "); > #BOTTOM DISPLAY ALOT > fi;# end if 1 > ; > # End Function number 3 > end; display_alot := proc(iter) local abserr, analytic_val_y, ind_var, numeric_val, relerr, term_no; global ALWAYS, INFO, glob_max_terms, DEBUGMASSIVE, DEBUGL, glob_iolevel, glob_log10abserr, glob_orig_start_sec, glob_smallish_float, glob_max_trunc_err, glob_last_good_h, glob_disp_incr, glob_reached_optimal_h, glob_initial_pass, sec_in_min, glob_clock_start_sec, glob_clock_sec, min_in_hour, djd_debug, glob_max_minutes, glob_iter, glob_start, glob_max_iter, glob_max_hours, glob_relerr, glob_abserr, glob_log10_abserr, glob_small_float, glob_optimal_clock_start_sec, glob_not_yet_finished, glob_display_flag, glob_warned, glob_optimal_start, glob_hmin, glob_max_opt_iter, glob_percent_done, glob_normmax, glob_max_sec, glob_look_poles, glob_optimal_done, glob_almost_1, years_in_century, days_in_year, glob_optimal_expect_sec, glob_max_order, glob_hmax, glob_html_log, glob_unchanged_h_cnt, centuries_in_millinium, glob_current_iter, glob_curr_iter_when_opt, glob_max_rel_trunc_err, glob_log10_relerr, glob_not_yet_start_msg, hours_in_day, glob_dump, glob_warned2, glob_dump_analytic, glob_hmin_init, glob_h, glob_log10normmin, glob_log10relerr, MAX_UNCHANGED, glob_no_eqs, glob_large_float, djd_debug2, array_const_3D0, array_const_4D0, array_const_0D0, array_const_1, array_const_2, array_const_2D0, array_pole, array_norms, array_1st_rel_error, array_x1_init, array_m1, array_x2, array_x1, array_tmp10, array_tmp11, array_tmp12, array_tmp13, array_tmp14, array_tmp15, array_tmp16, array_tmp17, array_type_pole, array_x2_init, array_t, array_last_rel_error, array_tmp0, array_tmp1, array_tmp2, array_tmp3, array_tmp4, array_tmp5, array_tmp6, array_tmp7, array_tmp8, array_tmp9, array_x2_higher_work2, array_x1_higher_work, array_x2_higher_work, array_poles, array_real_pole, array_x2_higher, array_complex_pole, array_x1_higher_work2, array_x1_higher, glob_last; if 0 <= iter then ind_var := array_t[1]; omniout_float(ALWAYS, "t[1] ", 33, ind_var, 20, " "); analytic_val_y := exact_soln_x2(ind_var); omniout_float(ALWAYS, "x2[1] (analytic) ", 33, analytic_val_y, 20, " "); term_no := 1; numeric_val := array_x2[term_no]; abserr := abs(numeric_val - analytic_val_y); omniout_float(ALWAYS, "x2[1] (numeric) ", 33, numeric_val, 20, " "); if abs(analytic_val_y) <> 0. then relerr := abserr*100.0/abs(analytic_val_y) else relerr := -1.0 end if; if glob_iter = 1 then array_1st_rel_error[1] := relerr else array_last_rel_error[1] := relerr end if; omniout_float(ALWAYS, "absolute error ", 4, abserr, 20, " "); omniout_float(ALWAYS, "relative error ", 4, relerr, 20, "%"); omniout_float(ALWAYS, "h ", 4, glob_h, 20, " "); analytic_val_y := exact_soln_x1(ind_var); omniout_float(ALWAYS, "x1[1] (analytic) ", 33, analytic_val_y, 20, " "); term_no := 1; numeric_val := array_x1[term_no]; abserr := abs(numeric_val - analytic_val_y); omniout_float(ALWAYS, "x1[1] (numeric) ", 33, numeric_val, 20, " "); if abs(analytic_val_y) <> 0. then relerr := abserr*100.0/abs(analytic_val_y) else relerr := -1.0 end if; if glob_iter = 1 then array_1st_rel_error[2] := relerr else array_last_rel_error[2] := relerr end if; omniout_float(ALWAYS, "absolute error ", 4, abserr, 20, " "); omniout_float(ALWAYS, "relative error ", 4, relerr, 20, "%"); omniout_float(ALWAYS, "h ", 4, glob_h, 20, " ") end if end proc > # Begin Function number 4 > adjust_for_pole := proc(h_param) > global > ALWAYS, > INFO, > glob_max_terms, > DEBUGMASSIVE, > DEBUGL, > glob_iolevel, > #Top Generate Globals Decl > glob_log10abserr, > glob_orig_start_sec, > glob_smallish_float, > glob_max_trunc_err, > glob_last_good_h, > glob_disp_incr, > glob_reached_optimal_h, > glob_initial_pass, > sec_in_min, > glob_clock_start_sec, > glob_clock_sec, > min_in_hour, > djd_debug, > glob_max_minutes, > glob_iter, > glob_start, > glob_max_iter, > glob_max_hours, > glob_relerr, > glob_abserr, > glob_log10_abserr, > glob_small_float, > glob_optimal_clock_start_sec, > glob_not_yet_finished, > glob_display_flag, > glob_warned, > glob_optimal_start, > glob_hmin, > glob_max_opt_iter, > glob_percent_done, > glob_normmax, > glob_max_sec, > glob_look_poles, > glob_optimal_done, > glob_almost_1, > years_in_century, > days_in_year, > glob_optimal_expect_sec, > glob_max_order, > glob_hmax, > glob_html_log, > glob_unchanged_h_cnt, > centuries_in_millinium, > glob_current_iter, > glob_curr_iter_when_opt, > glob_max_rel_trunc_err, > glob_log10_relerr, > glob_not_yet_start_msg, > hours_in_day, > glob_dump, > glob_warned2, > glob_dump_analytic, > glob_hmin_init, > glob_h, > glob_log10normmin, > glob_log10relerr, > MAX_UNCHANGED, > glob_no_eqs, > glob_large_float, > djd_debug2, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_3D0, > array_const_4D0, > array_const_0D0, > array_const_1, > array_const_2, > array_const_2D0, > #END CONST > array_pole, > array_norms, > array_1st_rel_error, > array_x1_init, > array_m1, > array_x2, > array_x1, > array_tmp10, > array_tmp11, > array_tmp12, > array_tmp13, > array_tmp14, > array_tmp15, > array_tmp16, > array_tmp17, > array_type_pole, > array_x2_init, > array_t, > array_last_rel_error, > array_tmp0, > array_tmp1, > array_tmp2, > array_tmp3, > array_tmp4, > array_tmp5, > array_tmp6, > array_tmp7, > array_tmp8, > array_tmp9, > array_x2_higher_work2, > array_x1_higher_work, > array_x2_higher_work, > array_poles, > array_real_pole, > array_x2_higher, > array_complex_pole, > array_x1_higher_work2, > array_x1_higher, > glob_last; > > local hnew, sz2, tmp; > #TOP ADJUST FOR POLE > > hnew := h_param; > glob_normmax := glob_small_float; > if (abs(array_x2_higher[1,1]) > glob_small_float) then # if number 1 > tmp := abs(array_x2_higher[1,1]); > if (tmp < glob_normmax) then # if number 2 > glob_normmax := tmp; > fi;# end if 2 > fi;# end if 1 > ; > if (abs(array_x1_higher[1,1]) > glob_small_float) then # if number 1 > tmp := abs(array_x1_higher[1,1]); > if (tmp < glob_normmax) then # if number 2 > glob_normmax := tmp; > fi;# end if 2 > fi;# end if 1 > ; > if (glob_look_poles and (abs(array_pole[1]) > glob_small_float) and (array_pole[1] <> glob_large_float)) then # if number 1 > sz2 := array_pole[1]/10.0; > if (sz2 < hnew) then # if number 2 > omniout_float(INFO,"glob_h adjusted to ",20,h_param,12,"due to singularity."); > omniout_str(INFO,"Reached Optimal"); > newline(); > return(hnew); > fi;# end if 2 > fi;# end if 1 > ; > if (not glob_reached_optimal_h) then # if number 1 > glob_reached_optimal_h := true; > glob_curr_iter_when_opt := glob_current_iter; > glob_optimal_clock_start_sec := elapsed_time_seconds(); > glob_optimal_start := array_t[1]; > fi;# end if 1 > ; > hnew := sz2; > #END block > #BOTTOM ADJUST FOR POLE > # End Function number 4 > end; adjust_for_pole := proc(h_param) local hnew, sz2, tmp; global ALWAYS, INFO, glob_max_terms, DEBUGMASSIVE, DEBUGL, glob_iolevel, glob_log10abserr, glob_orig_start_sec, glob_smallish_float, glob_max_trunc_err, glob_last_good_h, glob_disp_incr, glob_reached_optimal_h, glob_initial_pass, sec_in_min, glob_clock_start_sec, glob_clock_sec, min_in_hour, djd_debug, glob_max_minutes, glob_iter, glob_start, glob_max_iter, glob_max_hours, glob_relerr, glob_abserr, glob_log10_abserr, glob_small_float, glob_optimal_clock_start_sec, glob_not_yet_finished, glob_display_flag, glob_warned, glob_optimal_start, glob_hmin, glob_max_opt_iter, glob_percent_done, glob_normmax, glob_max_sec, glob_look_poles, glob_optimal_done, glob_almost_1, years_in_century, days_in_year, glob_optimal_expect_sec, glob_max_order, glob_hmax, glob_html_log, glob_unchanged_h_cnt, centuries_in_millinium, glob_current_iter, glob_curr_iter_when_opt, glob_max_rel_trunc_err, glob_log10_relerr, glob_not_yet_start_msg, hours_in_day, glob_dump, glob_warned2, glob_dump_analytic, glob_hmin_init, glob_h, glob_log10normmin, glob_log10relerr, MAX_UNCHANGED, glob_no_eqs, glob_large_float, djd_debug2, array_const_3D0, array_const_4D0, array_const_0D0, array_const_1, array_const_2, array_const_2D0, array_pole, array_norms, array_1st_rel_error, array_x1_init, array_m1, array_x2, array_x1, array_tmp10, array_tmp11, array_tmp12, array_tmp13, array_tmp14, array_tmp15, array_tmp16, array_tmp17, array_type_pole, array_x2_init, array_t, array_last_rel_error, array_tmp0, array_tmp1, array_tmp2, array_tmp3, array_tmp4, array_tmp5, array_tmp6, array_tmp7, array_tmp8, array_tmp9, array_x2_higher_work2, array_x1_higher_work, array_x2_higher_work, array_poles, array_real_pole, array_x2_higher, array_complex_pole, array_x1_higher_work2, array_x1_higher, glob_last; hnew := h_param; glob_normmax := glob_small_float; if glob_small_float < abs(array_x2_higher[1, 1]) then tmp := abs(array_x2_higher[1, 1]); if tmp < glob_normmax then glob_normmax := tmp end if end if; if glob_small_float < abs(array_x1_higher[1, 1]) then tmp := abs(array_x1_higher[1, 1]); if tmp < glob_normmax then glob_normmax := tmp end if end if; if glob_look_poles and glob_small_float < abs(array_pole[1]) and array_pole[1] <> glob_large_float then sz2 := array_pole[1]/10.0; if sz2 < hnew then omniout_float(INFO, "glob_h adjusted to ", 20, h_param, 12, "due to singularity."); omniout_str(INFO, "Reached Optimal"); newline(); return hnew end if end if; if not glob_reached_optimal_h then glob_reached_optimal_h := true; glob_curr_iter_when_opt := glob_current_iter; glob_optimal_clock_start_sec := elapsed_time_seconds(); glob_optimal_start := array_t[1] end if; hnew := sz2 end proc > # Begin Function number 5 > prog_report := proc(t_start,t_end) > global > ALWAYS, > INFO, > glob_max_terms, > DEBUGMASSIVE, > DEBUGL, > glob_iolevel, > #Top Generate Globals Decl > glob_log10abserr, > glob_orig_start_sec, > glob_smallish_float, > glob_max_trunc_err, > glob_last_good_h, > glob_disp_incr, > glob_reached_optimal_h, > glob_initial_pass, > sec_in_min, > glob_clock_start_sec, > glob_clock_sec, > min_in_hour, > djd_debug, > glob_max_minutes, > glob_iter, > glob_start, > glob_max_iter, > glob_max_hours, > glob_relerr, > glob_abserr, > glob_log10_abserr, > glob_small_float, > glob_optimal_clock_start_sec, > glob_not_yet_finished, > glob_display_flag, > glob_warned, > glob_optimal_start, > glob_hmin, > glob_max_opt_iter, > glob_percent_done, > glob_normmax, > glob_max_sec, > glob_look_poles, > glob_optimal_done, > glob_almost_1, > years_in_century, > days_in_year, > glob_optimal_expect_sec, > glob_max_order, > glob_hmax, > glob_html_log, > glob_unchanged_h_cnt, > centuries_in_millinium, > glob_current_iter, > glob_curr_iter_when_opt, > glob_max_rel_trunc_err, > glob_log10_relerr, > glob_not_yet_start_msg, > hours_in_day, > glob_dump, > glob_warned2, > glob_dump_analytic, > glob_hmin_init, > glob_h, > glob_log10normmin, > glob_log10relerr, > MAX_UNCHANGED, > glob_no_eqs, > glob_large_float, > djd_debug2, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_3D0, > array_const_4D0, > array_const_0D0, > array_const_1, > array_const_2, > array_const_2D0, > #END CONST > array_pole, > array_norms, > array_1st_rel_error, > array_x1_init, > array_m1, > array_x2, > array_x1, > array_tmp10, > array_tmp11, > array_tmp12, > array_tmp13, > array_tmp14, > array_tmp15, > array_tmp16, > array_tmp17, > array_type_pole, > array_x2_init, > array_t, > array_last_rel_error, > array_tmp0, > array_tmp1, > array_tmp2, > array_tmp3, > array_tmp4, > array_tmp5, > array_tmp6, > array_tmp7, > array_tmp8, > array_tmp9, > array_x2_higher_work2, > array_x1_higher_work, > array_x2_higher_work, > array_poles, > array_real_pole, > array_x2_higher, > array_complex_pole, > array_x1_higher_work2, > array_x1_higher, > glob_last; > > local clock_sec, opt_clock_sec, clock_sec1, expect_sec, left_sec, percent_done, total_clock_sec; > #TOP PROGRESS REPORT > clock_sec1 := elapsed_time_seconds(); > total_clock_sec := convfloat(clock_sec1) - convfloat(glob_orig_start_sec); > glob_clock_sec := convfloat(clock_sec1) - convfloat(glob_clock_start_sec); > left_sec := convfloat(glob_max_sec) + convfloat(glob_orig_start_sec) - convfloat(clock_sec1); > expect_sec := comp_expect_sec(convfloat(t_end),convfloat(t_start),convfloat(array_t[1]) + convfloat(glob_h) ,convfloat( clock_sec1) - convfloat(glob_orig_start_sec)); > opt_clock_sec := convfloat( clock_sec1) - convfloat(glob_optimal_clock_start_sec); > glob_optimal_expect_sec := comp_expect_sec(convfloat(t_end),convfloat(t_start),convfloat(array_t[1]) +convfloat( glob_h) ,convfloat( opt_clock_sec)); > percent_done := comp_percent(convfloat(t_end),convfloat(t_start),convfloat(array_t[1]) + convfloat(glob_h)); > glob_percent_done := percent_done; > omniout_str_noeol(INFO,"Total Elapsed Time "); > omniout_timestr(convfloat(total_clock_sec)); > omniout_str_noeol(INFO,"Elapsed Time(since restart) "); > omniout_timestr(convfloat(glob_clock_sec)); > if convfloat(percent_done) < convfloat(100.0) then # if number 1 > omniout_str_noeol(INFO,"Expected Time Remaining "); > omniout_timestr(convfloat(expect_sec)); > omniout_str_noeol(INFO,"Optimized Time Remaining "); > omniout_timestr(convfloat(glob_optimal_expect_sec)); > fi;# end if 1 > ; > omniout_str_noeol(INFO,"Time to Timeout "); > omniout_timestr(convfloat(left_sec)); > omniout_float(INFO, "Percent Done ",33,percent_done,4,"%"); > #BOTTOM PROGRESS REPORT > # End Function number 5 > end; prog_report := proc(t_start, t_end) local clock_sec, opt_clock_sec, clock_sec1, expect_sec, left_sec, percent_done, total_clock_sec; global ALWAYS, INFO, glob_max_terms, DEBUGMASSIVE, DEBUGL, glob_iolevel, glob_log10abserr, glob_orig_start_sec, glob_smallish_float, glob_max_trunc_err, glob_last_good_h, glob_disp_incr, glob_reached_optimal_h, glob_initial_pass, sec_in_min, glob_clock_start_sec, glob_clock_sec, min_in_hour, djd_debug, glob_max_minutes, glob_iter, glob_start, glob_max_iter, glob_max_hours, glob_relerr, glob_abserr, glob_log10_abserr, glob_small_float, glob_optimal_clock_start_sec, glob_not_yet_finished, glob_display_flag, glob_warned, glob_optimal_start, glob_hmin, glob_max_opt_iter, glob_percent_done, glob_normmax, glob_max_sec, glob_look_poles, glob_optimal_done, glob_almost_1, years_in_century, days_in_year, glob_optimal_expect_sec, glob_max_order, glob_hmax, glob_html_log, glob_unchanged_h_cnt, centuries_in_millinium, glob_current_iter, glob_curr_iter_when_opt, glob_max_rel_trunc_err, glob_log10_relerr, glob_not_yet_start_msg, hours_in_day, glob_dump, glob_warned2, glob_dump_analytic, glob_hmin_init, glob_h, glob_log10normmin, glob_log10relerr, MAX_UNCHANGED, glob_no_eqs, glob_large_float, djd_debug2, array_const_3D0, array_const_4D0, array_const_0D0, array_const_1, array_const_2, array_const_2D0, array_pole, array_norms, array_1st_rel_error, array_x1_init, array_m1, array_x2, array_x1, array_tmp10, array_tmp11, array_tmp12, array_tmp13, array_tmp14, array_tmp15, array_tmp16, array_tmp17, array_type_pole, array_x2_init, array_t, array_last_rel_error, array_tmp0, array_tmp1, array_tmp2, array_tmp3, array_tmp4, array_tmp5, array_tmp6, array_tmp7, array_tmp8, array_tmp9, array_x2_higher_work2, array_x1_higher_work, array_x2_higher_work, array_poles, array_real_pole, array_x2_higher, array_complex_pole, array_x1_higher_work2, array_x1_higher, glob_last; clock_sec1 := elapsed_time_seconds(); total_clock_sec := convfloat(clock_sec1) - convfloat(glob_orig_start_sec); glob_clock_sec := convfloat(clock_sec1) - convfloat(glob_clock_start_sec); left_sec := convfloat(glob_max_sec) + convfloat(glob_orig_start_sec) - convfloat(clock_sec1); expect_sec := comp_expect_sec(convfloat(t_end), convfloat(t_start), convfloat(array_t[1]) + convfloat(glob_h), convfloat(clock_sec1) - convfloat(glob_orig_start_sec)); opt_clock_sec := convfloat(clock_sec1) - convfloat(glob_optimal_clock_start_sec); glob_optimal_expect_sec := comp_expect_sec(convfloat(t_end), convfloat(t_start), convfloat(array_t[1]) + convfloat(glob_h), convfloat(opt_clock_sec)); percent_done := comp_percent(convfloat(t_end), convfloat(t_start), convfloat(array_t[1]) + convfloat(glob_h)); glob_percent_done := percent_done; omniout_str_noeol(INFO, "Total Elapsed Time "); omniout_timestr(convfloat(total_clock_sec)); omniout_str_noeol(INFO, "Elapsed Time(since restart) "); omniout_timestr(convfloat(glob_clock_sec)); if convfloat(percent_done) < convfloat(100.0) then omniout_str_noeol(INFO, "Expected Time Remaining "); omniout_timestr(convfloat(expect_sec)); omniout_str_noeol(INFO, "Optimized Time Remaining "); omniout_timestr(convfloat(glob_optimal_expect_sec)) end if; omniout_str_noeol(INFO, "Time to Timeout "); omniout_timestr(convfloat(left_sec)); omniout_float(INFO, "Percent Done ", 33, percent_done, 4, "%") end proc > # Begin Function number 6 > check_for_pole := proc() > global > ALWAYS, > INFO, > glob_max_terms, > DEBUGMASSIVE, > DEBUGL, > glob_iolevel, > #Top Generate Globals Decl > glob_log10abserr, > glob_orig_start_sec, > glob_smallish_float, > glob_max_trunc_err, > glob_last_good_h, > glob_disp_incr, > glob_reached_optimal_h, > glob_initial_pass, > sec_in_min, > glob_clock_start_sec, > glob_clock_sec, > min_in_hour, > djd_debug, > glob_max_minutes, > glob_iter, > glob_start, > glob_max_iter, > glob_max_hours, > glob_relerr, > glob_abserr, > glob_log10_abserr, > glob_small_float, > glob_optimal_clock_start_sec, > glob_not_yet_finished, > glob_display_flag, > glob_warned, > glob_optimal_start, > glob_hmin, > glob_max_opt_iter, > glob_percent_done, > glob_normmax, > glob_max_sec, > glob_look_poles, > glob_optimal_done, > glob_almost_1, > years_in_century, > days_in_year, > glob_optimal_expect_sec, > glob_max_order, > glob_hmax, > glob_html_log, > glob_unchanged_h_cnt, > centuries_in_millinium, > glob_current_iter, > glob_curr_iter_when_opt, > glob_max_rel_trunc_err, > glob_log10_relerr, > glob_not_yet_start_msg, > hours_in_day, > glob_dump, > glob_warned2, > glob_dump_analytic, > glob_hmin_init, > glob_h, > glob_log10normmin, > glob_log10relerr, > MAX_UNCHANGED, > glob_no_eqs, > glob_large_float, > djd_debug2, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_3D0, > array_const_4D0, > array_const_0D0, > array_const_1, > array_const_2, > array_const_2D0, > #END CONST > array_pole, > array_norms, > array_1st_rel_error, > array_x1_init, > array_m1, > array_x2, > array_x1, > array_tmp10, > array_tmp11, > array_tmp12, > array_tmp13, > array_tmp14, > array_tmp15, > array_tmp16, > array_tmp17, > array_type_pole, > array_x2_init, > array_t, > array_last_rel_error, > array_tmp0, > array_tmp1, > array_tmp2, > array_tmp3, > array_tmp4, > array_tmp5, > array_tmp6, > array_tmp7, > array_tmp8, > array_tmp9, > array_x2_higher_work2, > array_x1_higher_work, > array_x2_higher_work, > array_poles, > array_real_pole, > array_x2_higher, > array_complex_pole, > array_x1_higher_work2, > array_x1_higher, > glob_last; > > local cnt, dr1, dr2, ds1, ds2, hdrc, m, n, nr1, nr2, ord_no, rad_c, rcs, rm0, rm1, rm2, rm3, rm4, found; > #TOP CHECK FOR POLE > #IN RADII REAL EQ = 1 > #Computes radius of convergence and r_order of pole from 3 adjacent Taylor series terms. EQUATUON NUMBER 1 > #Applies to pole of arbitrary r_order on the real axis, > #Due to Prof. George Corliss. > n := glob_max_terms; > m := n - 2 - 1; > while ((m >= 10) and ((abs(array_x2_higher[1,m]) < glob_small_float) or (abs(array_x2_higher[1,m-1]) < glob_small_float) or (abs(array_x2_higher[1,m-2]) < glob_small_float ))) do # do number 2 > m := m - 1; > od;# end do number 2 > ; > if (m > 10) then # if number 1 > rm0 := array_x2_higher[1,m]/array_x2_higher[1,m-1]; > rm1 := array_x2_higher[1,m-1]/array_x2_higher[1,m-2]; > hdrc := convfloat(m-1)*rm0-convfloat(m-2)*rm1; > if (abs(hdrc) > glob_small_float) then # if number 2 > rcs := glob_h/hdrc; > ord_no := convfloat(m-1)*rm0/hdrc - convfloat(m) + 2.0; > array_real_pole[1,1] := rcs; > array_real_pole[1,2] := ord_no; > else > array_real_pole[1,1] := glob_large_float; > array_real_pole[1,2] := glob_large_float; > fi;# end if 2 > else > array_real_pole[1,1] := glob_large_float; > array_real_pole[1,2] := glob_large_float; > fi;# end if 1 > ; > #BOTTOM RADII REAL EQ = 1 > #IN RADII REAL EQ = 2 > #Computes radius of convergence and r_order of pole from 3 adjacent Taylor series terms. EQUATUON NUMBER 2 > #Applies to pole of arbitrary r_order on the real axis, > #Due to Prof. George Corliss. > n := glob_max_terms; > m := n - 1 - 1; > while ((m >= 10) and ((abs(array_x1_higher[1,m]) < glob_small_float) or (abs(array_x1_higher[1,m-1]) < glob_small_float) or (abs(array_x1_higher[1,m-2]) < glob_small_float ))) do # do number 2 > m := m - 1; > od;# end do number 2 > ; > if (m > 10) then # if number 1 > rm0 := array_x1_higher[1,m]/array_x1_higher[1,m-1]; > rm1 := array_x1_higher[1,m-1]/array_x1_higher[1,m-2]; > hdrc := convfloat(m-1)*rm0-convfloat(m-2)*rm1; > if (abs(hdrc) > glob_small_float) then # if number 2 > rcs := glob_h/hdrc; > ord_no := convfloat(m-1)*rm0/hdrc - convfloat(m) + 2.0; > array_real_pole[2,1] := rcs; > array_real_pole[2,2] := ord_no; > else > array_real_pole[2,1] := glob_large_float; > array_real_pole[2,2] := glob_large_float; > fi;# end if 2 > else > array_real_pole[2,1] := glob_large_float; > array_real_pole[2,2] := glob_large_float; > fi;# end if 1 > ; > #BOTTOM RADII REAL EQ = 2 > #TOP RADII COMPLEX EQ = 1 > #Computes radius of convergence for complex conjugate pair of poles. > #from 6 adjacent Taylor series terms > #Also computes r_order of poles. > #Due to Manuel Prieto. > #With a correction by Dennis J. Darland > n := glob_max_terms - 2 - 1; > cnt := 0; > while ((cnt < 5) and (n >= 10)) do # do number 2 > if (abs(array_x2_higher[1,n]) > glob_small_float) then # if number 1 > cnt := cnt + 1; > else > cnt := 0; > fi;# end if 1 > ; > n := n - 1; > od;# end do number 2 > ; > m := n + cnt; > if (m <= 10) then # if number 1 > array_complex_pole[1,1] := glob_large_float; > array_complex_pole[1,2] := glob_large_float; > elif (abs(array_x2_higher[1,m]) >= (glob_large_float)) or (abs(array_x2_higher[1,m-1]) >=(glob_large_float)) or (abs(array_x2_higher[1,m-2]) >= (glob_large_float)) or (abs(array_x2_higher[1,m-3]) >= (glob_large_float)) or (abs(array_x2_higher[1,m-4]) >= (glob_large_float)) or (abs(array_x2_higher[1,m-5]) >= (glob_large_float)) then # if number 2 > array_complex_pole[1,1] := glob_large_float; > array_complex_pole[1,2] := glob_large_float; > else > rm0 := (array_x2_higher[1,m])/(array_x2_higher[1,m-1]); > rm1 := (array_x2_higher[1,m-1])/(array_x2_higher[1,m-2]); > rm2 := (array_x2_higher[1,m-2])/(array_x2_higher[1,m-3]); > rm3 := (array_x2_higher[1,m-3])/(array_x2_higher[1,m-4]); > rm4 := (array_x2_higher[1,m-4])/(array_x2_higher[1,m-5]); > nr1 := convfloat(m-1)*rm0 - 2.0*convfloat(m-2)*rm1 + convfloat(m-3)*rm2; > nr2 := convfloat(m-2)*rm1 - 2.0*convfloat(m-3)*rm2 + convfloat(m-4)*rm3; > dr1 := (-1.0)/rm1 + 2.0/rm2 - 1.0/rm3; > dr2 := (-1.0)/rm2 + 2.0/rm3 - 1.0/rm4; > ds1 := 3.0/rm1 - 8.0/rm2 + 5.0/rm3; > ds2 := 3.0/rm2 - 8.0/rm3 + 5.0/rm4; > if ((abs(nr1 * dr2 - nr2 * dr1) <= glob_small_float) or (abs(dr1) <= glob_small_float)) then # if number 3 > array_complex_pole[1,1] := glob_large_float; > array_complex_pole[1,2] := glob_large_float; > else > if (abs(nr1*dr2 - nr2 * dr1) > glob_small_float) then # if number 4 > rcs := ((ds1*dr2 - ds2*dr1 +dr1*dr2)/(nr1*dr2 - nr2 * dr1)); > #(Manuels) rcs := (ds1*dr2 - ds2*dr1)/(nr1*dr2 - nr2 * dr1) > ord_no := (rcs*nr1 - ds1)/(2.0*dr1) -convfloat(m)/2.0; > if (abs(rcs) > glob_small_float) then # if number 5 > if (rcs > 0.0) then # if number 6 > rad_c := sqrt(rcs) * glob_h; > else > rad_c := glob_large_float; > fi;# end if 6 > else > rad_c := glob_large_float; > ord_no := glob_large_float; > fi;# end if 5 > else > rad_c := glob_large_float; > ord_no := glob_large_float; > fi;# end if 4 > fi;# end if 3 > ; > array_complex_pole[1,1] := rad_c; > array_complex_pole[1,2] := ord_no; > fi;# end if 2 > ; > #BOTTOM RADII COMPLEX EQ = 1 > #TOP RADII COMPLEX EQ = 2 > #Computes radius of convergence for complex conjugate pair of poles. > #from 6 adjacent Taylor series terms > #Also computes r_order of poles. > #Due to Manuel Prieto. > #With a correction by Dennis J. Darland > n := glob_max_terms - 1 - 1; > cnt := 0; > while ((cnt < 5) and (n >= 10)) do # do number 2 > if (abs(array_x1_higher[1,n]) > glob_small_float) then # if number 2 > cnt := cnt + 1; > else > cnt := 0; > fi;# end if 2 > ; > n := n - 1; > od;# end do number 2 > ; > m := n + cnt; > if (m <= 10) then # if number 2 > array_complex_pole[2,1] := glob_large_float; > array_complex_pole[2,2] := glob_large_float; > elif (abs(array_x1_higher[1,m]) >= (glob_large_float)) or (abs(array_x1_higher[1,m-1]) >=(glob_large_float)) or (abs(array_x1_higher[1,m-2]) >= (glob_large_float)) or (abs(array_x1_higher[1,m-3]) >= (glob_large_float)) or (abs(array_x1_higher[1,m-4]) >= (glob_large_float)) or (abs(array_x1_higher[1,m-5]) >= (glob_large_float)) then # if number 3 > array_complex_pole[2,1] := glob_large_float; > array_complex_pole[2,2] := glob_large_float; > else > rm0 := (array_x1_higher[1,m])/(array_x1_higher[1,m-1]); > rm1 := (array_x1_higher[1,m-1])/(array_x1_higher[1,m-2]); > rm2 := (array_x1_higher[1,m-2])/(array_x1_higher[1,m-3]); > rm3 := (array_x1_higher[1,m-3])/(array_x1_higher[1,m-4]); > rm4 := (array_x1_higher[1,m-4])/(array_x1_higher[1,m-5]); > nr1 := convfloat(m-1)*rm0 - 2.0*convfloat(m-2)*rm1 + convfloat(m-3)*rm2; > nr2 := convfloat(m-2)*rm1 - 2.0*convfloat(m-3)*rm2 + convfloat(m-4)*rm3; > dr1 := (-1.0)/rm1 + 2.0/rm2 - 1.0/rm3; > dr2 := (-1.0)/rm2 + 2.0/rm3 - 1.0/rm4; > ds1 := 3.0/rm1 - 8.0/rm2 + 5.0/rm3; > ds2 := 3.0/rm2 - 8.0/rm3 + 5.0/rm4; > if ((abs(nr1 * dr2 - nr2 * dr1) <= glob_small_float) or (abs(dr1) <= glob_small_float)) then # if number 4 > array_complex_pole[2,1] := glob_large_float; > array_complex_pole[2,2] := glob_large_float; > else > if (abs(nr1*dr2 - nr2 * dr1) > glob_small_float) then # if number 5 > rcs := ((ds1*dr2 - ds2*dr1 +dr1*dr2)/(nr1*dr2 - nr2 * dr1)); > #(Manuels) rcs := (ds1*dr2 - ds2*dr1)/(nr1*dr2 - nr2 * dr1) > ord_no := (rcs*nr1 - ds1)/(2.0*dr1) -convfloat(m)/2.0; > if (abs(rcs) > glob_small_float) then # if number 6 > if (rcs > 0.0) then # if number 7 > rad_c := sqrt(rcs) * glob_h; > else > rad_c := glob_large_float; > fi;# end if 7 > else > rad_c := glob_large_float; > ord_no := glob_large_float; > fi;# end if 6 > else > rad_c := glob_large_float; > ord_no := glob_large_float; > fi;# end if 5 > fi;# end if 4 > ; > array_complex_pole[2,1] := rad_c; > array_complex_pole[2,2] := ord_no; > fi;# end if 3 > ; > #BOTTOM RADII COMPLEX EQ = 2 > found := false; > #TOP WHICH RADII EQ = 1 > if not found and ((array_real_pole[1,1] = glob_large_float) or (array_real_pole[1,2] = glob_large_float)) and ((array_complex_pole[1,1] <> glob_large_float) and (array_complex_pole[1,2] <> glob_large_float)) and ((array_complex_pole[1,1] > 0.0) and (array_complex_pole[1,2] > 0.0)) then # if number 3 > array_poles[1,1] := array_complex_pole[1,1]; > array_poles[1,2] := array_complex_pole[1,2]; > found := true; > array_type_pole[1] := 2; > if (glob_display_flag) then # if number 4 > omniout_str(ALWAYS,"Complex estimate of poles used"); > fi;# end if 4 > ; > fi;# end if 3 > ; > if not found and ((array_real_pole[1,1] <> glob_large_float) and (array_real_pole[1,2] <> glob_large_float) and (array_real_pole[1,1] > 0.0) and (array_real_pole[1,2] > 0.0) and ((array_complex_pole[1,1] = glob_large_float) or (array_complex_pole[1,2] = glob_large_float) or (array_complex_pole[1,1] <= 0.0 ) or (array_complex_pole[1,2] <= 0.0))) then # if number 3 > array_poles[1,1] := array_real_pole[1,1]; > array_poles[1,2] := array_real_pole[1,2]; > found := true; > array_type_pole[1] := 1; > if (glob_display_flag) then # if number 4 > omniout_str(ALWAYS,"Real estimate of pole used"); > fi;# end if 4 > ; > fi;# end if 3 > ; > if not found and (((array_real_pole[1,1] = glob_large_float) or (array_real_pole[1,2] = glob_large_float)) and ((array_complex_pole[1,1] = glob_large_float) or (array_complex_pole[1,2] = glob_large_float))) then # if number 3 > array_poles[1,1] := glob_large_float; > array_poles[1,2] := glob_large_float; > found := true; > array_type_pole[1] := 3; > if (glob_display_flag) then # if number 4 > omniout_str(ALWAYS,"NO POLE"); > fi;# end if 4 > ; > fi;# end if 3 > ; > if not found and ((array_real_pole[1,1] < array_complex_pole[1,1]) and (array_real_pole[1,1] > 0.0) and (array_real_pole[1,2] > 0.0)) then # if number 3 > array_poles[1,1] := array_real_pole[1,1]; > array_poles[1,2] := array_real_pole[1,2]; > found := true; > array_type_pole[1] := 1; > if (glob_display_flag) then # if number 4 > omniout_str(ALWAYS,"Real estimate of pole used"); > fi;# end if 4 > ; > fi;# end if 3 > ; > if not found and ((array_complex_pole[1,1] <> glob_large_float) and (array_complex_pole[1,2] <> glob_large_float) and (array_complex_pole[1,1] > 0.0) and (array_complex_pole[1,2] > 0.0)) then # if number 3 > array_poles[1,1] := array_complex_pole[1,1]; > array_poles[1,2] := array_complex_pole[1,2]; > array_type_pole[1] := 2; > found := true; > if (glob_display_flag) then # if number 4 > omniout_str(ALWAYS,"Complex estimate of poles used"); > fi;# end if 4 > ; > fi;# end if 3 > ; > if not found then # if number 3 > array_poles[1,1] := glob_large_float; > array_poles[1,2] := glob_large_float; > array_type_pole[1] := 3; > if (glob_display_flag) then # if number 4 > omniout_str(ALWAYS,"NO POLE"); > fi;# end if 4 > ; > fi;# end if 3 > ; > #BOTTOM WHICH RADII EQ = 1 > found := false; > #TOP WHICH RADII EQ = 2 > if not found and ((array_real_pole[2,1] = glob_large_float) or (array_real_pole[2,2] = glob_large_float)) and ((array_complex_pole[2,1] <> glob_large_float) and (array_complex_pole[2,2] <> glob_large_float)) and ((array_complex_pole[2,1] > 0.0) and (array_complex_pole[2,2] > 0.0)) then # if number 3 > array_poles[2,1] := array_complex_pole[2,1]; > array_poles[2,2] := array_complex_pole[2,2]; > found := true; > array_type_pole[2] := 2; > if (glob_display_flag) then # if number 4 > omniout_str(ALWAYS,"Complex estimate of poles used"); > fi;# end if 4 > ; > fi;# end if 3 > ; > if not found and ((array_real_pole[2,1] <> glob_large_float) and (array_real_pole[2,2] <> glob_large_float) and (array_real_pole[2,1] > 0.0) and (array_real_pole[2,2] > 0.0) and ((array_complex_pole[2,1] = glob_large_float) or (array_complex_pole[2,2] = glob_large_float) or (array_complex_pole[2,1] <= 0.0 ) or (array_complex_pole[2,2] <= 0.0))) then # if number 3 > array_poles[2,1] := array_real_pole[2,1]; > array_poles[2,2] := array_real_pole[2,2]; > found := true; > array_type_pole[2] := 1; > if (glob_display_flag) then # if number 4 > omniout_str(ALWAYS,"Real estimate of pole used"); > fi;# end if 4 > ; > fi;# end if 3 > ; > if not found and (((array_real_pole[2,1] = glob_large_float) or (array_real_pole[2,2] = glob_large_float)) and ((array_complex_pole[2,1] = glob_large_float) or (array_complex_pole[2,2] = glob_large_float))) then # if number 3 > array_poles[2,1] := glob_large_float; > array_poles[2,2] := glob_large_float; > found := true; > array_type_pole[2] := 3; > if (glob_display_flag) then # if number 4 > omniout_str(ALWAYS,"NO POLE"); > fi;# end if 4 > ; > fi;# end if 3 > ; > if not found and ((array_real_pole[2,1] < array_complex_pole[2,1]) and (array_real_pole[2,1] > 0.0) and (array_real_pole[2,2] > 0.0)) then # if number 3 > array_poles[2,1] := array_real_pole[2,1]; > array_poles[2,2] := array_real_pole[2,2]; > found := true; > array_type_pole[2] := 1; > if (glob_display_flag) then # if number 4 > omniout_str(ALWAYS,"Real estimate of pole used"); > fi;# end if 4 > ; > fi;# end if 3 > ; > if not found and ((array_complex_pole[2,1] <> glob_large_float) and (array_complex_pole[2,2] <> glob_large_float) and (array_complex_pole[2,1] > 0.0) and (array_complex_pole[2,2] > 0.0)) then # if number 3 > array_poles[2,1] := array_complex_pole[2,1]; > array_poles[2,2] := array_complex_pole[2,2]; > array_type_pole[2] := 2; > found := true; > if (glob_display_flag) then # if number 4 > omniout_str(ALWAYS,"Complex estimate of poles used"); > fi;# end if 4 > ; > fi;# end if 3 > ; > if not found then # if number 3 > array_poles[2,1] := glob_large_float; > array_poles[2,2] := glob_large_float; > array_type_pole[2] := 3; > if (glob_display_flag) then # if number 4 > omniout_str(ALWAYS,"NO POLE"); > fi;# end if 4 > ; > fi;# end if 3 > ; > #BOTTOM WHICH RADII EQ = 2 > array_pole[1] := glob_large_float; > array_pole[2] := glob_large_float; > #TOP WHICH RADIUS EQ = 1 > if array_pole[1] > array_poles[1,1] then # if number 3 > array_pole[1] := array_poles[1,1]; > array_pole[2] := array_poles[1,2]; > fi;# end if 3 > ; > #BOTTOM WHICH RADIUS EQ = 1 > #TOP WHICH RADIUS EQ = 2 > if array_pole[1] > array_poles[2,1] then # if number 3 > array_pole[1] := array_poles[2,1]; > array_pole[2] := array_poles[2,2]; > fi;# end if 3 > ; > #BOTTOM WHICH RADIUS EQ = 2 > #BOTTOM CHECK FOR POLE > display_pole(); > # End Function number 6 > end; check_for_pole := proc() local cnt, dr1, dr2, ds1, ds2, hdrc, m, n, nr1, nr2, ord_no, rad_c, rcs, rm0, rm1, rm2, rm3, rm4, found; global ALWAYS, INFO, glob_max_terms, DEBUGMASSIVE, DEBUGL, glob_iolevel, glob_log10abserr, glob_orig_start_sec, glob_smallish_float, glob_max_trunc_err, glob_last_good_h, glob_disp_incr, glob_reached_optimal_h, glob_initial_pass, sec_in_min, glob_clock_start_sec, glob_clock_sec, min_in_hour, djd_debug, glob_max_minutes, glob_iter, glob_start, glob_max_iter, glob_max_hours, glob_relerr, glob_abserr, glob_log10_abserr, glob_small_float, glob_optimal_clock_start_sec, glob_not_yet_finished, glob_display_flag, glob_warned, glob_optimal_start, glob_hmin, glob_max_opt_iter, glob_percent_done, glob_normmax, glob_max_sec, glob_look_poles, glob_optimal_done, glob_almost_1, years_in_century, days_in_year, glob_optimal_expect_sec, glob_max_order, glob_hmax, glob_html_log, glob_unchanged_h_cnt, centuries_in_millinium, glob_current_iter, glob_curr_iter_when_opt, glob_max_rel_trunc_err, glob_log10_relerr, glob_not_yet_start_msg, hours_in_day, glob_dump, glob_warned2, glob_dump_analytic, glob_hmin_init, glob_h, glob_log10normmin, glob_log10relerr, MAX_UNCHANGED, glob_no_eqs, glob_large_float, djd_debug2, array_const_3D0, array_const_4D0, array_const_0D0, array_const_1, array_const_2, array_const_2D0, array_pole, array_norms, array_1st_rel_error, array_x1_init, array_m1, array_x2, array_x1, array_tmp10, array_tmp11, array_tmp12, array_tmp13, array_tmp14, array_tmp15, array_tmp16, array_tmp17, array_type_pole, array_x2_init, array_t, array_last_rel_error, array_tmp0, array_tmp1, array_tmp2, array_tmp3, array_tmp4, array_tmp5, array_tmp6, array_tmp7, array_tmp8, array_tmp9, array_x2_higher_work2, array_x1_higher_work, array_x2_higher_work, array_poles, array_real_pole, array_x2_higher, array_complex_pole, array_x1_higher_work2, array_x1_higher, glob_last; n := glob_max_terms; m := n - 3; while 10 <= m and (abs(array_x2_higher[1, m]) < glob_small_float or abs(array_x2_higher[1, m - 1]) < glob_small_float or abs(array_x2_higher[1, m - 2]) < glob_small_float) do m := m - 1 end do; if 10 < m then rm0 := array_x2_higher[1, m]/array_x2_higher[1, m - 1]; rm1 := array_x2_higher[1, m - 1]/array_x2_higher[1, m - 2]; hdrc := convfloat(m - 1)*rm0 - convfloat(m - 2)*rm1; if glob_small_float < abs(hdrc) then rcs := glob_h/hdrc; ord_no := convfloat(m - 1)*rm0/hdrc - convfloat(m) + 2.0; array_real_pole[1, 1] := rcs; array_real_pole[1, 2] := ord_no else array_real_pole[1, 1] := glob_large_float; array_real_pole[1, 2] := glob_large_float end if else array_real_pole[1, 1] := glob_large_float; array_real_pole[1, 2] := glob_large_float end if; n := glob_max_terms; m := n - 2; while 10 <= m and (abs(array_x1_higher[1, m]) < glob_small_float or abs(array_x1_higher[1, m - 1]) < glob_small_float or abs(array_x1_higher[1, m - 2]) < glob_small_float) do m := m - 1 end do; if 10 < m then rm0 := array_x1_higher[1, m]/array_x1_higher[1, m - 1]; rm1 := array_x1_higher[1, m - 1]/array_x1_higher[1, m - 2]; hdrc := convfloat(m - 1)*rm0 - convfloat(m - 2)*rm1; if glob_small_float < abs(hdrc) then rcs := glob_h/hdrc; ord_no := convfloat(m - 1)*rm0/hdrc - convfloat(m) + 2.0; array_real_pole[2, 1] := rcs; array_real_pole[2, 2] := ord_no else array_real_pole[2, 1] := glob_large_float; array_real_pole[2, 2] := glob_large_float end if else array_real_pole[2, 1] := glob_large_float; array_real_pole[2, 2] := glob_large_float end if; n := glob_max_terms - 3; cnt := 0; while cnt < 5 and 10 <= n do if glob_small_float < abs(array_x2_higher[1, n]) then cnt := cnt + 1 else cnt := 0 end if; n := n - 1 end do; m := n + cnt; if m <= 10 then array_complex_pole[1, 1] := glob_large_float; array_complex_pole[1, 2] := glob_large_float elif glob_large_float <= abs(array_x2_higher[1, m]) or glob_large_float <= abs(array_x2_higher[1, m - 1]) or glob_large_float <= abs(array_x2_higher[1, m - 2]) or glob_large_float <= abs(array_x2_higher[1, m - 3]) or glob_large_float <= abs(array_x2_higher[1, m - 4]) or glob_large_float <= abs(array_x2_higher[1, m - 5]) then array_complex_pole[1, 1] := glob_large_float; array_complex_pole[1, 2] := glob_large_float else rm0 := array_x2_higher[1, m]/array_x2_higher[1, m - 1]; rm1 := array_x2_higher[1, m - 1]/array_x2_higher[1, m - 2]; rm2 := array_x2_higher[1, m - 2]/array_x2_higher[1, m - 3]; rm3 := array_x2_higher[1, m - 3]/array_x2_higher[1, m - 4]; rm4 := array_x2_higher[1, m - 4]/array_x2_higher[1, m - 5]; nr1 := convfloat(m - 1)*rm0 - 2.0*convfloat(m - 2)*rm1 + convfloat(m - 3)*rm2; nr2 := convfloat(m - 2)*rm1 - 2.0*convfloat(m - 3)*rm2 + convfloat(m - 4)*rm3; dr1 := (-1)*(1.0)/rm1 + 2.0/rm2 - 1.0/rm3; dr2 := (-1)*(1.0)/rm2 + 2.0/rm3 - 1.0/rm4; ds1 := 3.0/rm1 - 8.0/rm2 + 5.0/rm3; ds2 := 3.0/rm2 - 8.0/rm3 + 5.0/rm4; if abs(nr1*dr2 - nr2*dr1) <= glob_small_float or abs(dr1) <= glob_small_float then array_complex_pole[1, 1] := glob_large_float; array_complex_pole[1, 2] := glob_large_float else if glob_small_float < abs(nr1*dr2 - nr2*dr1) then rcs := (ds1*dr2 - ds2*dr1 + dr1*dr2)/(nr1*dr2 - nr2*dr1); ord_no := (rcs*nr1 - ds1)/(2.0*dr1) - convfloat(m)/2.0; if glob_small_float < abs(rcs) then if 0. < rcs then rad_c := sqrt(rcs)*glob_h else rad_c := glob_large_float end if else rad_c := glob_large_float; ord_no := glob_large_float end if else rad_c := glob_large_float; ord_no := glob_large_float end if end if; array_complex_pole[1, 1] := rad_c; array_complex_pole[1, 2] := ord_no end if; n := glob_max_terms - 2; cnt := 0; while cnt < 5 and 10 <= n do if glob_small_float < abs(array_x1_higher[1, n]) then cnt := cnt + 1 else cnt := 0 end if; n := n - 1 end do; m := n + cnt; if m <= 10 then array_complex_pole[2, 1] := glob_large_float; array_complex_pole[2, 2] := glob_large_float elif glob_large_float <= abs(array_x1_higher[1, m]) or glob_large_float <= abs(array_x1_higher[1, m - 1]) or glob_large_float <= abs(array_x1_higher[1, m - 2]) or glob_large_float <= abs(array_x1_higher[1, m - 3]) or glob_large_float <= abs(array_x1_higher[1, m - 4]) or glob_large_float <= abs(array_x1_higher[1, m - 5]) then array_complex_pole[2, 1] := glob_large_float; array_complex_pole[2, 2] := glob_large_float else rm0 := array_x1_higher[1, m]/array_x1_higher[1, m - 1]; rm1 := array_x1_higher[1, m - 1]/array_x1_higher[1, m - 2]; rm2 := array_x1_higher[1, m - 2]/array_x1_higher[1, m - 3]; rm3 := array_x1_higher[1, m - 3]/array_x1_higher[1, m - 4]; rm4 := array_x1_higher[1, m - 4]/array_x1_higher[1, m - 5]; nr1 := convfloat(m - 1)*rm0 - 2.0*convfloat(m - 2)*rm1 + convfloat(m - 3)*rm2; nr2 := convfloat(m - 2)*rm1 - 2.0*convfloat(m - 3)*rm2 + convfloat(m - 4)*rm3; dr1 := (-1)*(1.0)/rm1 + 2.0/rm2 - 1.0/rm3; dr2 := (-1)*(1.0)/rm2 + 2.0/rm3 - 1.0/rm4; ds1 := 3.0/rm1 - 8.0/rm2 + 5.0/rm3; ds2 := 3.0/rm2 - 8.0/rm3 + 5.0/rm4; if abs(nr1*dr2 - nr2*dr1) <= glob_small_float or abs(dr1) <= glob_small_float then array_complex_pole[2, 1] := glob_large_float; array_complex_pole[2, 2] := glob_large_float else if glob_small_float < abs(nr1*dr2 - nr2*dr1) then rcs := (ds1*dr2 - ds2*dr1 + dr1*dr2)/(nr1*dr2 - nr2*dr1); ord_no := (rcs*nr1 - ds1)/(2.0*dr1) - convfloat(m)/2.0; if glob_small_float < abs(rcs) then if 0. < rcs then rad_c := sqrt(rcs)*glob_h else rad_c := glob_large_float end if else rad_c := glob_large_float; ord_no := glob_large_float end if else rad_c := glob_large_float; ord_no := glob_large_float end if end if; array_complex_pole[2, 1] := rad_c; array_complex_pole[2, 2] := ord_no end if; found := false; if not found and (array_real_pole[1, 1] = glob_large_float or array_real_pole[1, 2] = glob_large_float) and array_complex_pole[1, 1] <> glob_large_float and array_complex_pole[1, 2] <> glob_large_float and 0. < array_complex_pole[1, 1] and 0. < array_complex_pole[1, 2] then array_poles[1, 1] := array_complex_pole[1, 1]; array_poles[1, 2] := array_complex_pole[1, 2]; found := true; array_type_pole[1] := 2; if glob_display_flag then omniout_str(ALWAYS, "Complex estimate of poles used") end if end if; if not found and array_real_pole[1, 1] <> glob_large_float and array_real_pole[1, 2] <> glob_large_float and 0. < array_real_pole[1, 1] and 0. < array_real_pole[1, 2] and ( array_complex_pole[1, 1] = glob_large_float or array_complex_pole[1, 2] = glob_large_float or array_complex_pole[1, 1] <= 0. or array_complex_pole[1, 2] <= 0.) then array_poles[1, 1] := array_real_pole[1, 1]; array_poles[1, 2] := array_real_pole[1, 2]; found := true; array_type_pole[1] := 1; if glob_display_flag then omniout_str(ALWAYS, "Real estimate of pole used") end if end if; if not found and (array_real_pole[1, 1] = glob_large_float or array_real_pole[1, 2] = glob_large_float) and ( array_complex_pole[1, 1] = glob_large_float or array_complex_pole[1, 2] = glob_large_float) then array_poles[1, 1] := glob_large_float; array_poles[1, 2] := glob_large_float; found := true; array_type_pole[1] := 3; if glob_display_flag then omniout_str(ALWAYS, "NO POLE") end if end if; if not found and array_real_pole[1, 1] < array_complex_pole[1, 1] and 0. < array_real_pole[1, 1] and 0. < array_real_pole[1, 2] then array_poles[1, 1] := array_real_pole[1, 1]; array_poles[1, 2] := array_real_pole[1, 2]; found := true; array_type_pole[1] := 1; if glob_display_flag then omniout_str(ALWAYS, "Real estimate of pole used") end if end if; if not found and array_complex_pole[1, 1] <> glob_large_float and array_complex_pole[1, 2] <> glob_large_float and 0. < array_complex_pole[1, 1] and 0. < array_complex_pole[1, 2] then array_poles[1, 1] := array_complex_pole[1, 1]; array_poles[1, 2] := array_complex_pole[1, 2]; array_type_pole[1] := 2; found := true; if glob_display_flag then omniout_str(ALWAYS, "Complex estimate of poles used") end if end if; if not found then array_poles[1, 1] := glob_large_float; array_poles[1, 2] := glob_large_float; array_type_pole[1] := 3; if glob_display_flag then omniout_str(ALWAYS, "NO POLE") end if end if; found := false; if not found and (array_real_pole[2, 1] = glob_large_float or array_real_pole[2, 2] = glob_large_float) and array_complex_pole[2, 1] <> glob_large_float and array_complex_pole[2, 2] <> glob_large_float and 0. < array_complex_pole[2, 1] and 0. < array_complex_pole[2, 2] then array_poles[2, 1] := array_complex_pole[2, 1]; array_poles[2, 2] := array_complex_pole[2, 2]; found := true; array_type_pole[2] := 2; if glob_display_flag then omniout_str(ALWAYS, "Complex estimate of poles used") end if end if; if not found and array_real_pole[2, 1] <> glob_large_float and array_real_pole[2, 2] <> glob_large_float and 0. < array_real_pole[2, 1] and 0. < array_real_pole[2, 2] and ( array_complex_pole[2, 1] = glob_large_float or array_complex_pole[2, 2] = glob_large_float or array_complex_pole[2, 1] <= 0. or array_complex_pole[2, 2] <= 0.) then array_poles[2, 1] := array_real_pole[2, 1]; array_poles[2, 2] := array_real_pole[2, 2]; found := true; array_type_pole[2] := 1; if glob_display_flag then omniout_str(ALWAYS, "Real estimate of pole used") end if end if; if not found and (array_real_pole[2, 1] = glob_large_float or array_real_pole[2, 2] = glob_large_float) and ( array_complex_pole[2, 1] = glob_large_float or array_complex_pole[2, 2] = glob_large_float) then array_poles[2, 1] := glob_large_float; array_poles[2, 2] := glob_large_float; found := true; array_type_pole[2] := 3; if glob_display_flag then omniout_str(ALWAYS, "NO POLE") end if end if; if not found and array_real_pole[2, 1] < array_complex_pole[2, 1] and 0. < array_real_pole[2, 1] and 0. < array_real_pole[2, 2] then array_poles[2, 1] := array_real_pole[2, 1]; array_poles[2, 2] := array_real_pole[2, 2]; found := true; array_type_pole[2] := 1; if glob_display_flag then omniout_str(ALWAYS, "Real estimate of pole used") end if end if; if not found and array_complex_pole[2, 1] <> glob_large_float and array_complex_pole[2, 2] <> glob_large_float and 0. < array_complex_pole[2, 1] and 0. < array_complex_pole[2, 2] then array_poles[2, 1] := array_complex_pole[2, 1]; array_poles[2, 2] := array_complex_pole[2, 2]; array_type_pole[2] := 2; found := true; if glob_display_flag then omniout_str(ALWAYS, "Complex estimate of poles used") end if end if; if not found then array_poles[2, 1] := glob_large_float; array_poles[2, 2] := glob_large_float; array_type_pole[2] := 3; if glob_display_flag then omniout_str(ALWAYS, "NO POLE") end if end if; array_pole[1] := glob_large_float; array_pole[2] := glob_large_float; if array_poles[1, 1] < array_pole[1] then array_pole[1] := array_poles[1, 1]; array_pole[2] := array_poles[1, 2] end if; if array_poles[2, 1] < array_pole[1] then array_pole[1] := array_poles[2, 1]; array_pole[2] := array_poles[2, 2] end if; display_pole() end proc > # Begin Function number 7 > get_norms := proc() > global > ALWAYS, > INFO, > glob_max_terms, > DEBUGMASSIVE, > DEBUGL, > glob_iolevel, > #Top Generate Globals Decl > glob_log10abserr, > glob_orig_start_sec, > glob_smallish_float, > glob_max_trunc_err, > glob_last_good_h, > glob_disp_incr, > glob_reached_optimal_h, > glob_initial_pass, > sec_in_min, > glob_clock_start_sec, > glob_clock_sec, > min_in_hour, > djd_debug, > glob_max_minutes, > glob_iter, > glob_start, > glob_max_iter, > glob_max_hours, > glob_relerr, > glob_abserr, > glob_log10_abserr, > glob_small_float, > glob_optimal_clock_start_sec, > glob_not_yet_finished, > glob_display_flag, > glob_warned, > glob_optimal_start, > glob_hmin, > glob_max_opt_iter, > glob_percent_done, > glob_normmax, > glob_max_sec, > glob_look_poles, > glob_optimal_done, > glob_almost_1, > years_in_century, > days_in_year, > glob_optimal_expect_sec, > glob_max_order, > glob_hmax, > glob_html_log, > glob_unchanged_h_cnt, > centuries_in_millinium, > glob_current_iter, > glob_curr_iter_when_opt, > glob_max_rel_trunc_err, > glob_log10_relerr, > glob_not_yet_start_msg, > hours_in_day, > glob_dump, > glob_warned2, > glob_dump_analytic, > glob_hmin_init, > glob_h, > glob_log10normmin, > glob_log10relerr, > MAX_UNCHANGED, > glob_no_eqs, > glob_large_float, > djd_debug2, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_3D0, > array_const_4D0, > array_const_0D0, > array_const_1, > array_const_2, > array_const_2D0, > #END CONST > array_pole, > array_norms, > array_1st_rel_error, > array_x1_init, > array_m1, > array_x2, > array_x1, > array_tmp10, > array_tmp11, > array_tmp12, > array_tmp13, > array_tmp14, > array_tmp15, > array_tmp16, > array_tmp17, > array_type_pole, > array_x2_init, > array_t, > array_last_rel_error, > array_tmp0, > array_tmp1, > array_tmp2, > array_tmp3, > array_tmp4, > array_tmp5, > array_tmp6, > array_tmp7, > array_tmp8, > array_tmp9, > array_x2_higher_work2, > array_x1_higher_work, > array_x2_higher_work, > array_poles, > array_real_pole, > array_x2_higher, > array_complex_pole, > array_x1_higher_work2, > array_x1_higher, > glob_last; > > local iii; > if (not glob_initial_pass) then # if number 3 > set_z(array_norms,glob_max_terms+1); > #TOP GET NORMS > iii := 1; > while (iii <= glob_max_terms) do # do number 2 > if (abs(array_x2[iii]) > array_norms[iii]) then # if number 4 > array_norms[iii] := abs(array_x2[iii]); > fi;# end if 4 > ; > iii := iii + 1; > od;# end do number 2 > ; > iii := 1; > while (iii <= glob_max_terms) do # do number 2 > if (abs(array_x1[iii]) > array_norms[iii]) then # if number 4 > array_norms[iii] := abs(array_x1[iii]); > fi;# end if 4 > ; > iii := iii + 1; > od;# end do number 2 > #GET NORMS > ; > fi;# end if 3 > ; > # End Function number 7 > end; get_norms := proc() local iii; global ALWAYS, INFO, glob_max_terms, DEBUGMASSIVE, DEBUGL, glob_iolevel, glob_log10abserr, glob_orig_start_sec, glob_smallish_float, glob_max_trunc_err, glob_last_good_h, glob_disp_incr, glob_reached_optimal_h, glob_initial_pass, sec_in_min, glob_clock_start_sec, glob_clock_sec, min_in_hour, djd_debug, glob_max_minutes, glob_iter, glob_start, glob_max_iter, glob_max_hours, glob_relerr, glob_abserr, glob_log10_abserr, glob_small_float, glob_optimal_clock_start_sec, glob_not_yet_finished, glob_display_flag, glob_warned, glob_optimal_start, glob_hmin, glob_max_opt_iter, glob_percent_done, glob_normmax, glob_max_sec, glob_look_poles, glob_optimal_done, glob_almost_1, years_in_century, days_in_year, glob_optimal_expect_sec, glob_max_order, glob_hmax, glob_html_log, glob_unchanged_h_cnt, centuries_in_millinium, glob_current_iter, glob_curr_iter_when_opt, glob_max_rel_trunc_err, glob_log10_relerr, glob_not_yet_start_msg, hours_in_day, glob_dump, glob_warned2, glob_dump_analytic, glob_hmin_init, glob_h, glob_log10normmin, glob_log10relerr, MAX_UNCHANGED, glob_no_eqs, glob_large_float, djd_debug2, array_const_3D0, array_const_4D0, array_const_0D0, array_const_1, array_const_2, array_const_2D0, array_pole, array_norms, array_1st_rel_error, array_x1_init, array_m1, array_x2, array_x1, array_tmp10, array_tmp11, array_tmp12, array_tmp13, array_tmp14, array_tmp15, array_tmp16, array_tmp17, array_type_pole, array_x2_init, array_t, array_last_rel_error, array_tmp0, array_tmp1, array_tmp2, array_tmp3, array_tmp4, array_tmp5, array_tmp6, array_tmp7, array_tmp8, array_tmp9, array_x2_higher_work2, array_x1_higher_work, array_x2_higher_work, array_poles, array_real_pole, array_x2_higher, array_complex_pole, array_x1_higher_work2, array_x1_higher, glob_last; if not glob_initial_pass then set_z(array_norms, glob_max_terms + 1); iii := 1; while iii <= glob_max_terms do if array_norms[iii] < abs(array_x2[iii]) then array_norms[iii] := abs(array_x2[iii]) end if; iii := iii + 1 end do; iii := 1; while iii <= glob_max_terms do if array_norms[iii] < abs(array_x1[iii]) then array_norms[iii] := abs(array_x1[iii]) end if; iii := iii + 1 end do end if end proc > # Begin Function number 8 > atomall := proc() > global > ALWAYS, > INFO, > glob_max_terms, > DEBUGMASSIVE, > DEBUGL, > glob_iolevel, > #Top Generate Globals Decl > glob_log10abserr, > glob_orig_start_sec, > glob_smallish_float, > glob_max_trunc_err, > glob_last_good_h, > glob_disp_incr, > glob_reached_optimal_h, > glob_initial_pass, > sec_in_min, > glob_clock_start_sec, > glob_clock_sec, > min_in_hour, > djd_debug, > glob_max_minutes, > glob_iter, > glob_start, > glob_max_iter, > glob_max_hours, > glob_relerr, > glob_abserr, > glob_log10_abserr, > glob_small_float, > glob_optimal_clock_start_sec, > glob_not_yet_finished, > glob_display_flag, > glob_warned, > glob_optimal_start, > glob_hmin, > glob_max_opt_iter, > glob_percent_done, > glob_normmax, > glob_max_sec, > glob_look_poles, > glob_optimal_done, > glob_almost_1, > years_in_century, > days_in_year, > glob_optimal_expect_sec, > glob_max_order, > glob_hmax, > glob_html_log, > glob_unchanged_h_cnt, > centuries_in_millinium, > glob_current_iter, > glob_curr_iter_when_opt, > glob_max_rel_trunc_err, > glob_log10_relerr, > glob_not_yet_start_msg, > hours_in_day, > glob_dump, > glob_warned2, > glob_dump_analytic, > glob_hmin_init, > glob_h, > glob_log10normmin, > glob_log10relerr, > MAX_UNCHANGED, > glob_no_eqs, > glob_large_float, > djd_debug2, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_3D0, > array_const_4D0, > array_const_0D0, > array_const_1, > array_const_2, > array_const_2D0, > #END CONST > array_pole, > array_norms, > array_1st_rel_error, > array_x1_init, > array_m1, > array_x2, > array_x1, > array_tmp10, > array_tmp11, > array_tmp12, > array_tmp13, > array_tmp14, > array_tmp15, > array_tmp16, > array_tmp17, > array_type_pole, > array_x2_init, > array_t, > array_last_rel_error, > array_tmp0, > array_tmp1, > array_tmp2, > array_tmp3, > array_tmp4, > array_tmp5, > array_tmp6, > array_tmp7, > array_tmp8, > array_tmp9, > array_x2_higher_work2, > array_x1_higher_work, > array_x2_higher_work, > array_poles, > array_real_pole, > array_x2_higher, > array_complex_pole, > array_x1_higher_work2, > array_x1_higher, > glob_last; > > local kkk, order_d, adj2, temporary, term; > #TOP ATOMALL > #END OUTFILE1 > #BEGIN ATOMHDR1 > #emit pre diff $eq_no = 1 i = 1 > array_tmp1[1] := array_x2_higher[2,1]; > # emit pre mult $eq_no = 1 i = 1 > array_tmp2[1] := (array_const_3D0[1] * (array_tmp1[1])); > #emit pre add $eq_no = 1 i = 1 > array_tmp3[1] := array_const_0D0[1] + array_tmp2[1]; > # emit pre mult $eq_no = 1 i = 1 > array_tmp4[1] := (array_const_2D0[1] * (array_x2[1])); > #emit pre sub $eq_no = 1 i = 1 > array_tmp5[1] := (array_tmp3[1] - (array_tmp4[1])); > #emit pre diff $eq_no = 1 i = 1 > array_tmp6[1] := array_x1_higher[3,1]; > #emit pre sub $eq_no = 1 i = 1 > array_tmp7[1] := (array_tmp5[1] - (array_tmp6[1])); > #emit pre diff $eq_no = 1 i = 1 > array_tmp8[1] := array_x1_higher[2,1]; > #emit pre sub $eq_no = 1 i = 1 > array_tmp9[1] := (array_tmp7[1] - (array_tmp8[1])); > #emit pre add $eq_no = 1 i = 1 > array_tmp10[1] := array_tmp9[1] + array_x1[1]; > #emit pre assign xxx $eq_no = 1 i = 1 $min_hdrs = 5 > if (1 <= glob_max_terms) then # if number 1 > temporary := array_tmp10[1] * (glob_h ^ (2)) * factorial_3(0,2); > array_x2[3] := temporary; > array_x2_higher[1,3] := temporary; > temporary := temporary / glob_h * (2.0); > array_x2_higher[2,2] := temporary > ; > temporary := temporary / glob_h * (3.0); > array_x2_higher[3,1] := temporary > ; > fi;# end if 1 > ; > kkk := 2; > # emit pre mult $eq_no = 2 i = 1 > array_tmp12[1] := (array_const_4D0[1] * (array_x2[1])); > #emit pre diff $eq_no = 2 i = 1 > array_tmp13[1] := array_x2_higher[2,1]; > # emit pre mult $eq_no = 2 i = 1 > array_tmp14[1] := (array_const_2D0[1] * (array_tmp13[1])); > #emit pre sub $eq_no = 2 i = 1 > array_tmp15[1] := (array_tmp12[1] - (array_tmp14[1])); > # emit pre mult $eq_no = 2 i = 1 > array_tmp16[1] := (array_const_2D0[1] * (array_x1[1])); > #emit pre sub $eq_no = 2 i = 1 > array_tmp17[1] := (array_tmp15[1] - (array_tmp16[1])); > #emit pre assign xxx $eq_no = 2 i = 1 $min_hdrs = 5 > if (1 <= glob_max_terms) then # if number 1 > temporary := array_tmp17[1] * (glob_h ^ (1)) * factorial_3(0,1); > array_x1[2] := temporary; > array_x1_higher[1,2] := temporary; > temporary := temporary / glob_h * (2.0); > array_x1_higher[2,1] := temporary > ; > fi;# end if 1 > ; > kkk := 2; > #END ATOMHDR1 > #BEGIN ATOMHDR2 > #emit pre diff $eq_no = 1 i = 2 > array_tmp1[2] := array_x2_higher[2,2]; > # emit pre mult $eq_no = 1 i = 2 > array_tmp2[2] := ats(2,array_const_3D0,array_tmp1,1); > #emit pre add $eq_no = 1 i = 2 > array_tmp3[2] := array_const_0D0[2] + array_tmp2[2]; > # emit pre mult $eq_no = 1 i = 2 > array_tmp4[2] := ats(2,array_const_2D0,array_x2,1); > #emit pre sub $eq_no = 1 i = 2 > array_tmp5[2] := (array_tmp3[2] - (array_tmp4[2])); > #emit pre diff $eq_no = 1 i = 2 > array_tmp6[2] := array_x1_higher[3,2]; > #emit pre sub $eq_no = 1 i = 2 > array_tmp7[2] := (array_tmp5[2] - (array_tmp6[2])); > #emit pre diff $eq_no = 1 i = 2 > array_tmp8[2] := array_x1_higher[2,2]; > #emit pre sub $eq_no = 1 i = 2 > array_tmp9[2] := (array_tmp7[2] - (array_tmp8[2])); > #emit pre add $eq_no = 1 i = 2 > array_tmp10[2] := array_tmp9[2] + array_x1[2]; > #emit pre assign xxx $eq_no = 1 i = 2 $min_hdrs = 5 > if (2 <= glob_max_terms) then # if number 1 > temporary := array_tmp10[2] * (glob_h ^ (2)) * factorial_3(1,3); > array_x2[4] := temporary; > array_x2_higher[1,4] := temporary; > temporary := temporary / glob_h * (2.0); > array_x2_higher[2,3] := temporary > ; > temporary := temporary / glob_h * (3.0); > array_x2_higher[3,2] := temporary > ; > fi;# end if 1 > ; > kkk := 3; > # emit pre mult $eq_no = 2 i = 2 > array_tmp12[2] := ats(2,array_const_4D0,array_x2,1); > #emit pre diff $eq_no = 2 i = 2 > array_tmp13[2] := array_x2_higher[2,2]; > # emit pre mult $eq_no = 2 i = 2 > array_tmp14[2] := ats(2,array_const_2D0,array_tmp13,1); > #emit pre sub $eq_no = 2 i = 2 > array_tmp15[2] := (array_tmp12[2] - (array_tmp14[2])); > # emit pre mult $eq_no = 2 i = 2 > array_tmp16[2] := ats(2,array_const_2D0,array_x1,1); > #emit pre sub $eq_no = 2 i = 2 > array_tmp17[2] := (array_tmp15[2] - (array_tmp16[2])); > #emit pre assign xxx $eq_no = 2 i = 2 $min_hdrs = 5 > if (2 <= glob_max_terms) then # if number 1 > temporary := array_tmp17[2] * (glob_h ^ (1)) * factorial_3(1,2); > array_x1[3] := temporary; > array_x1_higher[1,3] := temporary; > temporary := temporary / glob_h * (2.0); > array_x1_higher[2,2] := temporary > ; > fi;# end if 1 > ; > kkk := 3; > #END ATOMHDR2 > #BEGIN ATOMHDR3 > #emit pre diff $eq_no = 1 i = 3 > array_tmp1[3] := array_x2_higher[2,3]; > # emit pre mult $eq_no = 1 i = 3 > array_tmp2[3] := ats(3,array_const_3D0,array_tmp1,1); > #emit pre add $eq_no = 1 i = 3 > array_tmp3[3] := array_const_0D0[3] + array_tmp2[3]; > # emit pre mult $eq_no = 1 i = 3 > array_tmp4[3] := ats(3,array_const_2D0,array_x2,1); > #emit pre sub $eq_no = 1 i = 3 > array_tmp5[3] := (array_tmp3[3] - (array_tmp4[3])); > #emit pre diff $eq_no = 1 i = 3 > array_tmp6[3] := array_x1_higher[3,3]; > #emit pre sub $eq_no = 1 i = 3 > array_tmp7[3] := (array_tmp5[3] - (array_tmp6[3])); > #emit pre diff $eq_no = 1 i = 3 > array_tmp8[3] := array_x1_higher[2,3]; > #emit pre sub $eq_no = 1 i = 3 > array_tmp9[3] := (array_tmp7[3] - (array_tmp8[3])); > #emit pre add $eq_no = 1 i = 3 > array_tmp10[3] := array_tmp9[3] + array_x1[3]; > #emit pre assign xxx $eq_no = 1 i = 3 $min_hdrs = 5 > if (3 <= glob_max_terms) then # if number 1 > temporary := array_tmp10[3] * (glob_h ^ (2)) * factorial_3(2,4); > array_x2[5] := temporary; > array_x2_higher[1,5] := temporary; > temporary := temporary / glob_h * (2.0); > array_x2_higher[2,4] := temporary > ; > temporary := temporary / glob_h * (3.0); > array_x2_higher[3,3] := temporary > ; > fi;# end if 1 > ; > kkk := 4; > # emit pre mult $eq_no = 2 i = 3 > array_tmp12[3] := ats(3,array_const_4D0,array_x2,1); > #emit pre diff $eq_no = 2 i = 3 > array_tmp13[3] := array_x2_higher[2,3]; > # emit pre mult $eq_no = 2 i = 3 > array_tmp14[3] := ats(3,array_const_2D0,array_tmp13,1); > #emit pre sub $eq_no = 2 i = 3 > array_tmp15[3] := (array_tmp12[3] - (array_tmp14[3])); > # emit pre mult $eq_no = 2 i = 3 > array_tmp16[3] := ats(3,array_const_2D0,array_x1,1); > #emit pre sub $eq_no = 2 i = 3 > array_tmp17[3] := (array_tmp15[3] - (array_tmp16[3])); > #emit pre assign xxx $eq_no = 2 i = 3 $min_hdrs = 5 > if (3 <= glob_max_terms) then # if number 1 > temporary := array_tmp17[3] * (glob_h ^ (1)) * factorial_3(2,3); > array_x1[4] := temporary; > array_x1_higher[1,4] := temporary; > temporary := temporary / glob_h * (2.0); > array_x1_higher[2,3] := temporary > ; > fi;# end if 1 > ; > kkk := 4; > #END ATOMHDR3 > #BEGIN ATOMHDR4 > #emit pre diff $eq_no = 1 i = 4 > array_tmp1[4] := array_x2_higher[2,4]; > # emit pre mult $eq_no = 1 i = 4 > array_tmp2[4] := ats(4,array_const_3D0,array_tmp1,1); > #emit pre add $eq_no = 1 i = 4 > array_tmp3[4] := array_const_0D0[4] + array_tmp2[4]; > # emit pre mult $eq_no = 1 i = 4 > array_tmp4[4] := ats(4,array_const_2D0,array_x2,1); > #emit pre sub $eq_no = 1 i = 4 > array_tmp5[4] := (array_tmp3[4] - (array_tmp4[4])); > #emit pre diff $eq_no = 1 i = 4 > array_tmp6[4] := array_x1_higher[3,4]; > #emit pre sub $eq_no = 1 i = 4 > array_tmp7[4] := (array_tmp5[4] - (array_tmp6[4])); > #emit pre diff $eq_no = 1 i = 4 > array_tmp8[4] := array_x1_higher[2,4]; > #emit pre sub $eq_no = 1 i = 4 > array_tmp9[4] := (array_tmp7[4] - (array_tmp8[4])); > #emit pre add $eq_no = 1 i = 4 > array_tmp10[4] := array_tmp9[4] + array_x1[4]; > #emit pre assign xxx $eq_no = 1 i = 4 $min_hdrs = 5 > if (4 <= glob_max_terms) then # if number 1 > temporary := array_tmp10[4] * (glob_h ^ (2)) * factorial_3(3,5); > array_x2[6] := temporary; > array_x2_higher[1,6] := temporary; > temporary := temporary / glob_h * (2.0); > array_x2_higher[2,5] := temporary > ; > temporary := temporary / glob_h * (3.0); > array_x2_higher[3,4] := temporary > ; > fi;# end if 1 > ; > kkk := 5; > # emit pre mult $eq_no = 2 i = 4 > array_tmp12[4] := ats(4,array_const_4D0,array_x2,1); > #emit pre diff $eq_no = 2 i = 4 > array_tmp13[4] := array_x2_higher[2,4]; > # emit pre mult $eq_no = 2 i = 4 > array_tmp14[4] := ats(4,array_const_2D0,array_tmp13,1); > #emit pre sub $eq_no = 2 i = 4 > array_tmp15[4] := (array_tmp12[4] - (array_tmp14[4])); > # emit pre mult $eq_no = 2 i = 4 > array_tmp16[4] := ats(4,array_const_2D0,array_x1,1); > #emit pre sub $eq_no = 2 i = 4 > array_tmp17[4] := (array_tmp15[4] - (array_tmp16[4])); > #emit pre assign xxx $eq_no = 2 i = 4 $min_hdrs = 5 > if (4 <= glob_max_terms) then # if number 1 > temporary := array_tmp17[4] * (glob_h ^ (1)) * factorial_3(3,4); > array_x1[5] := temporary; > array_x1_higher[1,5] := temporary; > temporary := temporary / glob_h * (2.0); > array_x1_higher[2,4] := temporary > ; > fi;# end if 1 > ; > kkk := 5; > #END ATOMHDR4 > #BEGIN ATOMHDR5 > #emit pre diff $eq_no = 1 i = 5 > array_tmp1[5] := array_x2_higher[2,5]; > # emit pre mult $eq_no = 1 i = 5 > array_tmp2[5] := ats(5,array_const_3D0,array_tmp1,1); > #emit pre add $eq_no = 1 i = 5 > array_tmp3[5] := array_const_0D0[5] + array_tmp2[5]; > # emit pre mult $eq_no = 1 i = 5 > array_tmp4[5] := ats(5,array_const_2D0,array_x2,1); > #emit pre sub $eq_no = 1 i = 5 > array_tmp5[5] := (array_tmp3[5] - (array_tmp4[5])); > #emit pre diff $eq_no = 1 i = 5 > array_tmp6[5] := array_x1_higher[3,5]; > #emit pre sub $eq_no = 1 i = 5 > array_tmp7[5] := (array_tmp5[5] - (array_tmp6[5])); > #emit pre diff $eq_no = 1 i = 5 > array_tmp8[5] := array_x1_higher[2,5]; > #emit pre sub $eq_no = 1 i = 5 > array_tmp9[5] := (array_tmp7[5] - (array_tmp8[5])); > #emit pre add $eq_no = 1 i = 5 > array_tmp10[5] := array_tmp9[5] + array_x1[5]; > #emit pre assign xxx $eq_no = 1 i = 5 $min_hdrs = 5 > if (5 <= glob_max_terms) then # if number 1 > temporary := array_tmp10[5] * (glob_h ^ (2)) * factorial_3(4,6); > array_x2[7] := temporary; > array_x2_higher[1,7] := temporary; > temporary := temporary / glob_h * (2.0); > array_x2_higher[2,6] := temporary > ; > temporary := temporary / glob_h * (3.0); > array_x2_higher[3,5] := temporary > ; > fi;# end if 1 > ; > kkk := 6; > # emit pre mult $eq_no = 2 i = 5 > array_tmp12[5] := ats(5,array_const_4D0,array_x2,1); > #emit pre diff $eq_no = 2 i = 5 > array_tmp13[5] := array_x2_higher[2,5]; > # emit pre mult $eq_no = 2 i = 5 > array_tmp14[5] := ats(5,array_const_2D0,array_tmp13,1); > #emit pre sub $eq_no = 2 i = 5 > array_tmp15[5] := (array_tmp12[5] - (array_tmp14[5])); > # emit pre mult $eq_no = 2 i = 5 > array_tmp16[5] := ats(5,array_const_2D0,array_x1,1); > #emit pre sub $eq_no = 2 i = 5 > array_tmp17[5] := (array_tmp15[5] - (array_tmp16[5])); > #emit pre assign xxx $eq_no = 2 i = 5 $min_hdrs = 5 > if (5 <= glob_max_terms) then # if number 1 > temporary := array_tmp17[5] * (glob_h ^ (1)) * factorial_3(4,5); > array_x1[6] := temporary; > array_x1_higher[1,6] := temporary; > temporary := temporary / glob_h * (2.0); > array_x1_higher[2,5] := temporary > ; > fi;# end if 1 > ; > kkk := 6; > #END ATOMHDR5 > #BEGIN OUTFILE3 > #Top Atomall While Loop-- outfile3 > while (kkk <= glob_max_terms) do # do number 1 > #END OUTFILE3 > #BEGIN OUTFILE4 > #emit diff $eq_no = 1 > array_tmp1[kkk] := array_x2_higher[2,kkk]; > #emit mult $eq_no = 1 > array_tmp2[kkk] := ats(kkk,array_const_3D0,array_tmp1,1); > #emit add $eq_no = 1 > array_tmp3[kkk] := array_const_0D0[kkk] + array_tmp2[kkk]; > #emit mult $eq_no = 1 > array_tmp4[kkk] := ats(kkk,array_const_2D0,array_x2,1); > #emit sub $eq_no = 1 > array_tmp5[kkk] := (array_tmp3[kkk] - (array_tmp4[kkk])); > #emit diff $eq_no = 1 > array_tmp6[kkk] := array_x1_higher[3,kkk]; > #emit sub $eq_no = 1 > array_tmp7[kkk] := (array_tmp5[kkk] - (array_tmp6[kkk])); > #emit diff $eq_no = 1 > array_tmp8[kkk] := array_x1_higher[2,kkk]; > #emit sub $eq_no = 1 > array_tmp9[kkk] := (array_tmp7[kkk] - (array_tmp8[kkk])); > #emit add $eq_no = 1 > array_tmp10[kkk] := array_tmp9[kkk] + array_x1[kkk]; > #emit assign $eq_no = 1 > order_d := 2; > if (kkk + order_d + 1 <= glob_max_terms) then # if number 1 > temporary := array_tmp10[kkk] * (glob_h ^ (order_d)) / factorial_3((kkk - 1),(kkk + order_d - 1)); > array_x2[kkk + order_d] := temporary; > array_x2_higher[1,kkk + order_d] := temporary; > term := kkk + order_d - 1; > adj2 := 2; > while (adj2 <= order_d + 1) and (term >= 1) do # do number 2 > temporary := temporary / glob_h * convfp(adj2); > array_x2_higher[adj2,term] := temporary; > adj2 := adj2 + 1; > term := term - 1; > od;# end do number 2 > fi;# end if 1 > ; > #emit mult $eq_no = 2 > array_tmp12[kkk] := ats(kkk,array_const_4D0,array_x2,1); > #emit diff $eq_no = 2 > array_tmp13[kkk] := array_x2_higher[2,kkk]; > #emit mult $eq_no = 2 > array_tmp14[kkk] := ats(kkk,array_const_2D0,array_tmp13,1); > #emit sub $eq_no = 2 > array_tmp15[kkk] := (array_tmp12[kkk] - (array_tmp14[kkk])); > #emit mult $eq_no = 2 > array_tmp16[kkk] := ats(kkk,array_const_2D0,array_x1,1); > #emit sub $eq_no = 2 > array_tmp17[kkk] := (array_tmp15[kkk] - (array_tmp16[kkk])); > #emit assign $eq_no = 2 > order_d := 1; > if (kkk + order_d + 1 <= glob_max_terms) then # if number 1 > temporary := array_tmp17[kkk] * (glob_h ^ (order_d)) / factorial_3((kkk - 1),(kkk + order_d - 1)); > array_x1[kkk + order_d] := temporary; > array_x1_higher[1,kkk + order_d] := temporary; > term := kkk + order_d - 1; > adj2 := 2; > while (adj2 <= order_d + 1) and (term >= 1) do # do number 2 > temporary := temporary / glob_h * convfp(adj2); > array_x1_higher[adj2,term] := temporary; > adj2 := adj2 + 1; > term := term - 1; > od;# end do number 2 > fi;# end if 1 > ; > kkk := kkk + 1; > od;# end do number 1 > ; > #BOTTOM ATOMALL > #END OUTFILE4 > #BEGIN OUTFILE5 > # End Function number 8 > end; atomall := proc() local kkk, order_d, adj2, temporary, term; global ALWAYS, INFO, glob_max_terms, DEBUGMASSIVE, DEBUGL, glob_iolevel, glob_log10abserr, glob_orig_start_sec, glob_smallish_float, glob_max_trunc_err, glob_last_good_h, glob_disp_incr, glob_reached_optimal_h, glob_initial_pass, sec_in_min, glob_clock_start_sec, glob_clock_sec, min_in_hour, djd_debug, glob_max_minutes, glob_iter, glob_start, glob_max_iter, glob_max_hours, glob_relerr, glob_abserr, glob_log10_abserr, glob_small_float, glob_optimal_clock_start_sec, glob_not_yet_finished, glob_display_flag, glob_warned, glob_optimal_start, glob_hmin, glob_max_opt_iter, glob_percent_done, glob_normmax, glob_max_sec, glob_look_poles, glob_optimal_done, glob_almost_1, years_in_century, days_in_year, glob_optimal_expect_sec, glob_max_order, glob_hmax, glob_html_log, glob_unchanged_h_cnt, centuries_in_millinium, glob_current_iter, glob_curr_iter_when_opt, glob_max_rel_trunc_err, glob_log10_relerr, glob_not_yet_start_msg, hours_in_day, glob_dump, glob_warned2, glob_dump_analytic, glob_hmin_init, glob_h, glob_log10normmin, glob_log10relerr, MAX_UNCHANGED, glob_no_eqs, glob_large_float, djd_debug2, array_const_3D0, array_const_4D0, array_const_0D0, array_const_1, array_const_2, array_const_2D0, array_pole, array_norms, array_1st_rel_error, array_x1_init, array_m1, array_x2, array_x1, array_tmp10, array_tmp11, array_tmp12, array_tmp13, array_tmp14, array_tmp15, array_tmp16, array_tmp17, array_type_pole, array_x2_init, array_t, array_last_rel_error, array_tmp0, array_tmp1, array_tmp2, array_tmp3, array_tmp4, array_tmp5, array_tmp6, array_tmp7, array_tmp8, array_tmp9, array_x2_higher_work2, array_x1_higher_work, array_x2_higher_work, array_poles, array_real_pole, array_x2_higher, array_complex_pole, array_x1_higher_work2, array_x1_higher, glob_last; array_tmp1[1] := array_x2_higher[2, 1]; array_tmp2[1] := array_const_3D0[1]*array_tmp1[1]; array_tmp3[1] := array_const_0D0[1] + array_tmp2[1]; array_tmp4[1] := array_const_2D0[1]*array_x2[1]; array_tmp5[1] := array_tmp3[1] - array_tmp4[1]; array_tmp6[1] := array_x1_higher[3, 1]; array_tmp7[1] := array_tmp5[1] - array_tmp6[1]; array_tmp8[1] := array_x1_higher[2, 1]; array_tmp9[1] := array_tmp7[1] - array_tmp8[1]; array_tmp10[1] := array_tmp9[1] + array_x1[1]; if 1 <= glob_max_terms then temporary := array_tmp10[1]*glob_h^2*factorial_3(0, 2); array_x2[3] := temporary; array_x2_higher[1, 3] := temporary; temporary := temporary*2.0/glob_h; array_x2_higher[2, 2] := temporary; temporary := temporary*3.0/glob_h; array_x2_higher[3, 1] := temporary end if; kkk := 2; array_tmp12[1] := array_const_4D0[1]*array_x2[1]; array_tmp13[1] := array_x2_higher[2, 1]; array_tmp14[1] := array_const_2D0[1]*array_tmp13[1]; array_tmp15[1] := array_tmp12[1] - array_tmp14[1]; array_tmp16[1] := array_const_2D0[1]*array_x1[1]; array_tmp17[1] := array_tmp15[1] - array_tmp16[1]; if 1 <= glob_max_terms then temporary := array_tmp17[1]*glob_h*factorial_3(0, 1); array_x1[2] := temporary; array_x1_higher[1, 2] := temporary; temporary := temporary*2.0/glob_h; array_x1_higher[2, 1] := temporary end if; kkk := 2; array_tmp1[2] := array_x2_higher[2, 2]; array_tmp2[2] := ats(2, array_const_3D0, array_tmp1, 1); array_tmp3[2] := array_const_0D0[2] + array_tmp2[2]; array_tmp4[2] := ats(2, array_const_2D0, array_x2, 1); array_tmp5[2] := array_tmp3[2] - array_tmp4[2]; array_tmp6[2] := array_x1_higher[3, 2]; array_tmp7[2] := array_tmp5[2] - array_tmp6[2]; array_tmp8[2] := array_x1_higher[2, 2]; array_tmp9[2] := array_tmp7[2] - array_tmp8[2]; array_tmp10[2] := array_tmp9[2] + array_x1[2]; if 2 <= glob_max_terms then temporary := array_tmp10[2]*glob_h^2*factorial_3(1, 3); array_x2[4] := temporary; array_x2_higher[1, 4] := temporary; temporary := temporary*2.0/glob_h; array_x2_higher[2, 3] := temporary; temporary := temporary*3.0/glob_h; array_x2_higher[3, 2] := temporary end if; kkk := 3; array_tmp12[2] := ats(2, array_const_4D0, array_x2, 1); array_tmp13[2] := array_x2_higher[2, 2]; array_tmp14[2] := ats(2, array_const_2D0, array_tmp13, 1); array_tmp15[2] := array_tmp12[2] - array_tmp14[2]; array_tmp16[2] := ats(2, array_const_2D0, array_x1, 1); array_tmp17[2] := array_tmp15[2] - array_tmp16[2]; if 2 <= glob_max_terms then temporary := array_tmp17[2]*glob_h*factorial_3(1, 2); array_x1[3] := temporary; array_x1_higher[1, 3] := temporary; temporary := temporary*2.0/glob_h; array_x1_higher[2, 2] := temporary end if; kkk := 3; array_tmp1[3] := array_x2_higher[2, 3]; array_tmp2[3] := ats(3, array_const_3D0, array_tmp1, 1); array_tmp3[3] := array_const_0D0[3] + array_tmp2[3]; array_tmp4[3] := ats(3, array_const_2D0, array_x2, 1); array_tmp5[3] := array_tmp3[3] - array_tmp4[3]; array_tmp6[3] := array_x1_higher[3, 3]; array_tmp7[3] := array_tmp5[3] - array_tmp6[3]; array_tmp8[3] := array_x1_higher[2, 3]; array_tmp9[3] := array_tmp7[3] - array_tmp8[3]; array_tmp10[3] := array_tmp9[3] + array_x1[3]; if 3 <= glob_max_terms then temporary := array_tmp10[3]*glob_h^2*factorial_3(2, 4); array_x2[5] := temporary; array_x2_higher[1, 5] := temporary; temporary := temporary*2.0/glob_h; array_x2_higher[2, 4] := temporary; temporary := temporary*3.0/glob_h; array_x2_higher[3, 3] := temporary end if; kkk := 4; array_tmp12[3] := ats(3, array_const_4D0, array_x2, 1); array_tmp13[3] := array_x2_higher[2, 3]; array_tmp14[3] := ats(3, array_const_2D0, array_tmp13, 1); array_tmp15[3] := array_tmp12[3] - array_tmp14[3]; array_tmp16[3] := ats(3, array_const_2D0, array_x1, 1); array_tmp17[3] := array_tmp15[3] - array_tmp16[3]; if 3 <= glob_max_terms then temporary := array_tmp17[3]*glob_h*factorial_3(2, 3); array_x1[4] := temporary; array_x1_higher[1, 4] := temporary; temporary := temporary*2.0/glob_h; array_x1_higher[2, 3] := temporary end if; kkk := 4; array_tmp1[4] := array_x2_higher[2, 4]; array_tmp2[4] := ats(4, array_const_3D0, array_tmp1, 1); array_tmp3[4] := array_const_0D0[4] + array_tmp2[4]; array_tmp4[4] := ats(4, array_const_2D0, array_x2, 1); array_tmp5[4] := array_tmp3[4] - array_tmp4[4]; array_tmp6[4] := array_x1_higher[3, 4]; array_tmp7[4] := array_tmp5[4] - array_tmp6[4]; array_tmp8[4] := array_x1_higher[2, 4]; array_tmp9[4] := array_tmp7[4] - array_tmp8[4]; array_tmp10[4] := array_tmp9[4] + array_x1[4]; if 4 <= glob_max_terms then temporary := array_tmp10[4]*glob_h^2*factorial_3(3, 5); array_x2[6] := temporary; array_x2_higher[1, 6] := temporary; temporary := temporary*2.0/glob_h; array_x2_higher[2, 5] := temporary; temporary := temporary*3.0/glob_h; array_x2_higher[3, 4] := temporary end if; kkk := 5; array_tmp12[4] := ats(4, array_const_4D0, array_x2, 1); array_tmp13[4] := array_x2_higher[2, 4]; array_tmp14[4] := ats(4, array_const_2D0, array_tmp13, 1); array_tmp15[4] := array_tmp12[4] - array_tmp14[4]; array_tmp16[4] := ats(4, array_const_2D0, array_x1, 1); array_tmp17[4] := array_tmp15[4] - array_tmp16[4]; if 4 <= glob_max_terms then temporary := array_tmp17[4]*glob_h*factorial_3(3, 4); array_x1[5] := temporary; array_x1_higher[1, 5] := temporary; temporary := temporary*2.0/glob_h; array_x1_higher[2, 4] := temporary end if; kkk := 5; array_tmp1[5] := array_x2_higher[2, 5]; array_tmp2[5] := ats(5, array_const_3D0, array_tmp1, 1); array_tmp3[5] := array_const_0D0[5] + array_tmp2[5]; array_tmp4[5] := ats(5, array_const_2D0, array_x2, 1); array_tmp5[5] := array_tmp3[5] - array_tmp4[5]; array_tmp6[5] := array_x1_higher[3, 5]; array_tmp7[5] := array_tmp5[5] - array_tmp6[5]; array_tmp8[5] := array_x1_higher[2, 5]; array_tmp9[5] := array_tmp7[5] - array_tmp8[5]; array_tmp10[5] := array_tmp9[5] + array_x1[5]; if 5 <= glob_max_terms then temporary := array_tmp10[5]*glob_h^2*factorial_3(4, 6); array_x2[7] := temporary; array_x2_higher[1, 7] := temporary; temporary := temporary*2.0/glob_h; array_x2_higher[2, 6] := temporary; temporary := temporary*3.0/glob_h; array_x2_higher[3, 5] := temporary end if; kkk := 6; array_tmp12[5] := ats(5, array_const_4D0, array_x2, 1); array_tmp13[5] := array_x2_higher[2, 5]; array_tmp14[5] := ats(5, array_const_2D0, array_tmp13, 1); array_tmp15[5] := array_tmp12[5] - array_tmp14[5]; array_tmp16[5] := ats(5, array_const_2D0, array_x1, 1); array_tmp17[5] := array_tmp15[5] - array_tmp16[5]; if 5 <= glob_max_terms then temporary := array_tmp17[5]*glob_h*factorial_3(4, 5); array_x1[6] := temporary; array_x1_higher[1, 6] := temporary; temporary := temporary*2.0/glob_h; array_x1_higher[2, 5] := temporary end if; kkk := 6; while kkk <= glob_max_terms do array_tmp1[kkk] := array_x2_higher[2, kkk]; array_tmp2[kkk] := ats(kkk, array_const_3D0, array_tmp1, 1); array_tmp3[kkk] := array_const_0D0[kkk] + array_tmp2[kkk]; array_tmp4[kkk] := ats(kkk, array_const_2D0, array_x2, 1); array_tmp5[kkk] := array_tmp3[kkk] - array_tmp4[kkk]; array_tmp6[kkk] := array_x1_higher[3, kkk]; array_tmp7[kkk] := array_tmp5[kkk] - array_tmp6[kkk]; array_tmp8[kkk] := array_x1_higher[2, kkk]; array_tmp9[kkk] := array_tmp7[kkk] - array_tmp8[kkk]; array_tmp10[kkk] := array_tmp9[kkk] + array_x1[kkk]; order_d := 2; if kkk + order_d + 1 <= glob_max_terms then temporary := array_tmp10[kkk]*glob_h^order_d/ factorial_3(kkk - 1, kkk + order_d - 1); array_x2[kkk + order_d] := temporary; array_x2_higher[1, kkk + order_d] := temporary; term := kkk + order_d - 1; adj2 := 2; while adj2 <= order_d + 1 and 1 <= term do temporary := temporary*convfp(adj2)/glob_h; array_x2_higher[adj2, term] := temporary; adj2 := adj2 + 1; term := term - 1 end do end if; array_tmp12[kkk] := ats(kkk, array_const_4D0, array_x2, 1); array_tmp13[kkk] := array_x2_higher[2, kkk]; array_tmp14[kkk] := ats(kkk, array_const_2D0, array_tmp13, 1); array_tmp15[kkk] := array_tmp12[kkk] - array_tmp14[kkk]; array_tmp16[kkk] := ats(kkk, array_const_2D0, array_x1, 1); array_tmp17[kkk] := array_tmp15[kkk] - array_tmp16[kkk]; order_d := 1; if kkk + order_d + 1 <= glob_max_terms then temporary := array_tmp17[kkk]*glob_h^order_d/ factorial_3(kkk - 1, kkk + order_d - 1); array_x1[kkk + order_d] := temporary; array_x1_higher[1, kkk + order_d] := temporary; term := kkk + order_d - 1; adj2 := 2; while adj2 <= order_d + 1 and 1 <= term do temporary := temporary*convfp(adj2)/glob_h; array_x1_higher[adj2, term] := temporary; adj2 := adj2 + 1; term := term - 1 end do end if; kkk := kkk + 1 end do end proc > #BEGIN ATS LIBRARY BLOCK > omniout_str := proc(iolevel,str) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > printf("%s\n",str); > fi; > # End Function number 1 > end; omniout_str := proc(iolevel, str) global glob_iolevel; if iolevel <= glob_iolevel then printf("%s\n", str) end if end proc > omniout_str_noeol := proc(iolevel,str) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > printf("%s",str); > fi; > # End Function number 1 > end; omniout_str_noeol := proc(iolevel, str) global glob_iolevel; if iolevel <= glob_iolevel then printf("%s", str) end if end proc > omniout_labstr := proc(iolevel,label,str) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > print(label,str); > fi; > # End Function number 1 > end; omniout_labstr := proc(iolevel, label, str) global glob_iolevel; if iolevel <= glob_iolevel then print(label, str) end if end proc > omniout_float := proc(iolevel,prelabel,prelen,value,vallen,postlabel) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > if vallen = 4 then > printf("%-30s = %-42.4g %s \n",prelabel,value, postlabel); > else > printf("%-30s = %-42.32g %s \n",prelabel,value, postlabel); > fi; > fi; > # End Function number 1 > end; omniout_float := proc(iolevel, prelabel, prelen, value, vallen, postlabel) global glob_iolevel; if iolevel <= glob_iolevel then if vallen = 4 then printf("%-30s = %-42.4g %s \n", prelabel, value, postlabel) else printf("%-30s = %-42.32g %s \n", prelabel, value, postlabel) end if end if end proc > omniout_int := proc(iolevel,prelabel,prelen,value,vallen,postlabel) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > if vallen = 5 then > printf("%-30s = %-32d %s\n",prelabel,value, postlabel); > else > printf("%-30s = %-32d %s \n",prelabel,value, postlabel); > fi; > fi; > # End Function number 1 > end; omniout_int := proc(iolevel, prelabel, prelen, value, vallen, postlabel) global glob_iolevel; if iolevel <= glob_iolevel then if vallen = 5 then printf("%-30s = %-32d %s\n", prelabel, value, postlabel) else printf("%-30s = %-32d %s \n", prelabel, value, postlabel) end if end if end proc > omniout_float_arr := proc(iolevel,prelabel,elemnt,prelen,value,vallen,postlabel) > global glob_iolevel; > if (glob_iolevel >= iolevel) then > print(prelabel,"[",elemnt,"]",value, postlabel); > fi; > # End Function number 1 > end; omniout_float_arr := proc( iolevel, prelabel, elemnt, prelen, value, vallen, postlabel) global glob_iolevel; if iolevel <= glob_iolevel then print(prelabel, "[", elemnt, "]", value, postlabel) end if end proc > dump_series := proc(iolevel,dump_label,series_name, > array_series,numb) > global glob_iolevel; > local i; > if (glob_iolevel >= iolevel) then > i := 1; > while (i <= numb) do > print(dump_label,series_name > ,i,array_series[i]); > i := i + 1; > od; > fi; > # End Function number 1 > end; dump_series := proc(iolevel, dump_label, series_name, array_series, numb) local i; global glob_iolevel; if iolevel <= glob_iolevel then i := 1; while i <= numb do print(dump_label, series_name, i, array_series[i]); i := i + 1 end do end if end proc > dump_series_2 := proc(iolevel,dump_label,series_name2, > array_series2,numb,subnum,array_x) > global glob_iolevel; > local i,sub,ts_term; > if (glob_iolevel >= iolevel) then > sub := 1; > while (sub <= subnum) do > i := 1; > while (i <= numb) do > print(dump_label,series_name2,sub,i,array_series2[sub,i]); > od; > sub := sub + 1; > od; > fi; > # End Function number 1 > end; dump_series_2 := proc( iolevel, dump_label, series_name2, array_series2, numb, subnum, array_x) local i, sub, ts_term; global glob_iolevel; if iolevel <= glob_iolevel then sub := 1; while sub <= subnum do i := 1; while i <= numb do print(dump_label, series_name2, sub, i, array_series2[sub, i]) end do; sub := sub + 1 end do end if end proc > cs_info := proc(iolevel,str) > global glob_iolevel,glob_correct_start_flag,glob_h,glob_reached_optimal_h; > if (glob_iolevel >= iolevel) then > print("cs_info " , str , " glob_correct_start_flag = " , glob_correct_start_flag , "glob_h := " , glob_h , "glob_reached_optimal_h := " , glob_reached_optimal_h) > fi; > # End Function number 1 > end; cs_info := proc(iolevel, str) global glob_iolevel, glob_correct_start_flag, glob_h, glob_reached_optimal_h; if iolevel <= glob_iolevel then print("cs_info ", str, " glob_correct_start_flag = ", glob_correct_start_flag, "glob_h := ", glob_h, "glob_reached_optimal_h := ", glob_reached_optimal_h) end if end proc > # Begin Function number 2 > logitem_time := proc(fd,secs_in) > global centuries_in_millinium, days_in_year, hours_in_day, min_in_hour, sec_in_min, years_in_century; > local cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int; > secs := (secs_in); > if (secs > 0.0) then # if number 1 > sec_in_millinium := convfloat(sec_in_min * min_in_hour * hours_in_day * days_in_year * years_in_century * centuries_in_millinium); > milliniums := convfloat(secs / sec_in_millinium); > millinium_int := floor(milliniums); > centuries := (milliniums - millinium_int)*centuries_in_millinium; > cent_int := floor(centuries); > years := (centuries - cent_int) * years_in_century; > years_int := floor(years); > days := (years - years_int) * days_in_year; > days_int := floor(days); > hours := (days - days_int) * hours_in_day; > hours_int := floor(hours); > minutes := (hours - hours_int) * min_in_hour; > minutes_int := floor(minutes); > seconds := (minutes - minutes_int) * sec_in_min; > sec_int := floor(seconds); > fprintf(fd,""); > if (millinium_int > 0) then # if number 2 > fprintf(fd,"%d Millinia %d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds",millinium_int,cent_int,years_int,days_int,hours_int,minutes_int,sec_int); > elif (cent_int > 0) then # if number 3 > fprintf(fd,"%d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds",cent_int,years_int,days_int,hours_int,minutes_int,sec_int); > elif (years_int > 0) then # if number 4 > fprintf(fd,"%d Years %d Days %d Hours %d Minutes %d Seconds",years_int,days_int,hours_int,minutes_int,sec_int); > elif (days_int > 0) then # if number 5 > fprintf(fd,"%d Days %d Hours %d Minutes %d Seconds",days_int,hours_int,minutes_int,sec_int); > elif (hours_int > 0) then # if number 6 > fprintf(fd,"%d Hours %d Minutes %d Seconds",hours_int,minutes_int,sec_int); > elif (minutes_int > 0) then # if number 7 > fprintf(fd,"%d Minutes %d Seconds",minutes_int,sec_int); > else > fprintf(fd,"%d Seconds",sec_int); > fi;# end if 7 > else > fprintf(fd,"Unknown"); > fi;# end if 6 > fprintf(fd,""); > # End Function number 2 > end; logitem_time := proc(fd, secs_in) local cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int; global centuries_in_millinium, days_in_year, hours_in_day, min_in_hour, sec_in_min, years_in_century; secs := secs_in; if 0. < secs then sec_in_millinium := convfloat(sec_in_min*min_in_hour*hours_in_day* days_in_year*years_in_century*centuries_in_millinium); milliniums := convfloat(secs/sec_in_millinium); millinium_int := floor(milliniums); centuries := (milliniums - millinium_int)*centuries_in_millinium; cent_int := floor(centuries); years := (centuries - cent_int)*years_in_century; years_int := floor(years); days := (years - years_int)*days_in_year; days_int := floor(days); hours := (days - days_int)*hours_in_day; hours_int := floor(hours); minutes := (hours - hours_int)*min_in_hour; minutes_int := floor(minutes); seconds := (minutes - minutes_int)*sec_in_min; sec_int := floor(seconds); fprintf(fd, ""); if 0 < millinium_int then fprintf(fd, "%d Millinia %d Centuries %\ d Years %d Days %d Hours %d Minutes %d Seconds", millinium_int, cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < cent_int then fprintf(fd, "%d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds", cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < years_int then fprintf(fd, "%d Years %d Days %d Hours %d Minutes %d Seconds", years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < days_int then fprintf(fd, "%d Days %d Hours %d Minutes %d Seconds", days_int, hours_int, minutes_int, sec_int) elif 0 < hours_int then fprintf(fd, "%d Hours %d Minutes %d Seconds", hours_int, minutes_int, sec_int) elif 0 < minutes_int then fprintf(fd, "%d Minutes %d Seconds", minutes_int, sec_int) else fprintf(fd, "%d Seconds", sec_int) end if else fprintf(fd, "Unknown") end if; fprintf(fd, "") end proc > omniout_timestr := proc (secs_in) > global centuries_in_millinium, days_in_year, hours_in_day, min_in_hour, sec_in_min, years_in_century; > local cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int; > secs := convfloat(secs_in); > if (secs > 0.0) then # if number 6 > sec_in_millinium := convfloat(sec_in_min * min_in_hour * hours_in_day * days_in_year * years_in_century * centuries_in_millinium); > milliniums := convfloat(secs / sec_in_millinium); > millinium_int := floor(milliniums); > centuries := (milliniums - millinium_int)*centuries_in_millinium; > cent_int := floor(centuries); > years := (centuries - cent_int) * years_in_century; > years_int := floor(years); > days := (years - years_int) * days_in_year; > days_int := floor(days); > hours := (days - days_int) * hours_in_day; > hours_int := floor(hours); > minutes := (hours - hours_int) * min_in_hour; > minutes_int := floor(minutes); > seconds := (minutes - minutes_int) * sec_in_min; > sec_int := floor(seconds); > > if (millinium_int > 0) then # if number 7 > printf(" = %d Millinia %d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds\n",millinium_int,cent_int,years_int,days_int,hours_int,minutes_int,sec_int); > elif (cent_int > 0) then # if number 8 > printf(" = %d Centuries %d Years %d Days %d Hours %d Minutes %d Seconds\n",cent_int,years_int,days_int,hours_int,minutes_int,sec_int); > elif (years_int > 0) then # if number 9 > printf(" = %d Years %d Days %d Hours %d Minutes %d Seconds\n",years_int,days_int,hours_int,minutes_int,sec_int); > elif (days_int > 0) then # if number 10 > printf(" = %d Days %d Hours %d Minutes %d Seconds\n",days_int,hours_int,minutes_int,sec_int); > elif (hours_int > 0) then # if number 11 > printf(" = %d Hours %d Minutes %d Seconds\n",hours_int,minutes_int,sec_int); > elif (minutes_int > 0) then # if number 12 > printf(" = %d Minutes %d Seconds\n",minutes_int,sec_int); > else > printf(" = %d Seconds\n",sec_int); > fi;# end if 12 > else > printf(" Unknown\n"); > fi;# end if 11 > # End Function number 2 > end; omniout_timestr := proc(secs_in) local cent_int, centuries, days, days_int, hours, hours_int, millinium_int, milliniums, minutes, minutes_int, sec_in_millinium, sec_int, seconds, secs, years, years_int; global centuries_in_millinium, days_in_year, hours_in_day, min_in_hour, sec_in_min, years_in_century; secs := convfloat(secs_in); if 0. < secs then sec_in_millinium := convfloat(sec_in_min*min_in_hour*hours_in_day* days_in_year*years_in_century*centuries_in_millinium); milliniums := convfloat(secs/sec_in_millinium); millinium_int := floor(milliniums); centuries := (milliniums - millinium_int)*centuries_in_millinium; cent_int := floor(centuries); years := (centuries - cent_int)*years_in_century; years_int := floor(years); days := (years - years_int)*days_in_year; days_int := floor(days); hours := (days - days_int)*hours_in_day; hours_int := floor(hours); minutes := (hours - hours_int)*min_in_hour; minutes_int := floor(minutes); seconds := (minutes - minutes_int)*sec_in_min; sec_int := floor(seconds); if 0 < millinium_int then printf(" = %d Millinia %d Centuries %d\ Years %d Days %d Hours %d Minutes %d Seconds\n", millinium_int, cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < cent_int then printf(" = %d Centuries %d Years %d Days \ %d Hours %d Minutes %d Seconds\n", cent_int, years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < years_int then printf( " = %d Years %d Days %d Hours %d Minutes %d Seconds\n", years_int, days_int, hours_int, minutes_int, sec_int) elif 0 < days_int then printf( " = %d Days %d Hours %d Minutes %d Seconds\n", days_int, hours_int, minutes_int, sec_int) elif 0 < hours_int then printf( " = %d Hours %d Minutes %d Seconds\n", hours_int, minutes_int, sec_int) elif 0 < minutes_int then printf(" = %d Minutes %d Seconds\n", minutes_int, sec_int) else printf(" = %d Seconds\n", sec_int) end if else printf(" Unknown\n") end if end proc > > # Begin Function number 3 > ats := proc( > mmm_ats,array_a,array_b,jjj_ats) > local iii_ats, lll_ats,ma_ats, ret_ats; > ret_ats := 0.0; > if (jjj_ats <= mmm_ats) then # if number 11 > ma_ats := mmm_ats + 1; > iii_ats := jjj_ats; > while (iii_ats <= mmm_ats) do # do number 1 > lll_ats := ma_ats - iii_ats; > ret_ats := ret_ats + array_a[iii_ats]*array_b[lll_ats]; > iii_ats := iii_ats + 1; > od;# end do number 1 > fi;# end if 11 > ; > ret_ats > # End Function number 3 > end; ats := proc(mmm_ats, array_a, array_b, jjj_ats) local iii_ats, lll_ats, ma_ats, ret_ats; ret_ats := 0.; if jjj_ats <= mmm_ats then ma_ats := mmm_ats + 1; iii_ats := jjj_ats; while iii_ats <= mmm_ats do lll_ats := ma_ats - iii_ats; ret_ats := ret_ats + array_a[iii_ats]*array_b[lll_ats]; iii_ats := iii_ats + 1 end do end if; ret_ats end proc > > # Begin Function number 4 > att := proc( > mmm_att,array_aa,array_bb,jjj_att) > global glob_max_terms; > local al_att, iii_att,lll_att, ma_att, ret_att; > ret_att := 0.0; > if (jjj_att <= mmm_att) then # if number 11 > ma_att := mmm_att + 2; > iii_att := jjj_att; > while (iii_att <= mmm_att) do # do number 1 > lll_att := ma_att - iii_att; > al_att := (lll_att - 1); > if (lll_att <= glob_max_terms) then # if number 12 > ret_att := ret_att + array_aa[iii_att]*array_bb[lll_att]* convfp(al_att); > fi;# end if 12 > ; > iii_att := iii_att + 1; > od;# end do number 1 > ; > ret_att := ret_att / convfp(mmm_att) ; > fi;# end if 11 > ; > ret_att; > # End Function number 4 > end; att := proc(mmm_att, array_aa, array_bb, jjj_att) local al_att, iii_att, lll_att, ma_att, ret_att; global glob_max_terms; ret_att := 0.; if jjj_att <= mmm_att then ma_att := mmm_att + 2; iii_att := jjj_att; while iii_att <= mmm_att do lll_att := ma_att - iii_att; al_att := lll_att - 1; if lll_att <= glob_max_terms then ret_att := ret_att + array_aa[iii_att]*array_bb[lll_att]*convfp(al_att) end if; iii_att := iii_att + 1 end do; ret_att := ret_att/convfp(mmm_att) end if; ret_att end proc > # Begin Function number 5 > display_pole := proc() > global ALWAYS,glob_display_flag, glob_large_float, array_pole; > if ((array_pole[1] <> glob_large_float) and (array_pole[1] > 0.0) and (array_pole[2] <> glob_large_float) and (array_pole[2]> 0.0) and glob_display_flag) then # if number 11 > omniout_float(ALWAYS,"Radius of convergence ",4, array_pole[1],4," "); > omniout_float(ALWAYS,"Order of pole ",4, array_pole[2],4," "); > fi;# end if 11 > # End Function number 5 > end; display_pole := proc() global ALWAYS, glob_display_flag, glob_large_float, array_pole; if array_pole[1] <> glob_large_float and 0. < array_pole[1] and array_pole[2] <> glob_large_float and 0. < array_pole[2] and glob_display_flag then omniout_float(ALWAYS, "Radius of convergence ", 4, array_pole[1], 4, " "); omniout_float(ALWAYS, "Order of pole ", 4, array_pole[2], 4, " ") end if end proc > # Begin Function number 6 > logditto := proc(file) > fprintf(file,""); > fprintf(file,"ditto"); > fprintf(file,""); > # End Function number 6 > end; logditto := proc(file) fprintf(file, ""); fprintf(file, "ditto"); fprintf(file, "") end proc > # Begin Function number 7 > logitem_integer := proc(file,n) > fprintf(file,""); > fprintf(file,"%d",n); > fprintf(file,""); > # End Function number 7 > end; logitem_integer := proc(file, n) fprintf(file, ""); fprintf(file, "%d", n); fprintf(file, "") end proc > # Begin Function number 8 > logitem_str := proc(file,str) > fprintf(file,""); > fprintf(file,str); > fprintf(file,""); > # End Function number 8 > end; logitem_str := proc(file, str) fprintf(file, ""); fprintf(file, str); fprintf(file, "") end proc > # Begin Function number 9 > log_revs := proc(file,revs) > fprintf(file,revs); > # End Function number 9 > end; log_revs := proc(file, revs) fprintf(file, revs) end proc > # Begin Function number 10 > logitem_float := proc(file,x) > fprintf(file,""); > fprintf(file,"%g",x); > fprintf(file,""); > # End Function number 10 > end; logitem_float := proc(file, x) fprintf(file, ""); fprintf(file, "%g", x); fprintf(file, "") end proc > # Begin Function number 11 > logitem_pole := proc(file,pole) > fprintf(file,""); > if pole = 0 then # if number 11 > fprintf(file,"NA"); > elif pole = 1 then # if number 12 > fprintf(file,"Real"); > elif pole = 2 then # if number 13 > fprintf(file,"Complex"); > else > fprintf(file,"No Pole"); > fi;# end if 13 > fprintf(file,""); > # End Function number 11 > end; logitem_pole := proc(file, pole) fprintf(file, ""); if pole = 0 then fprintf(file, "NA") elif pole = 1 then fprintf(file, "Real") elif pole = 2 then fprintf(file, "Complex") else fprintf(file, "No Pole") end if; fprintf(file, "") end proc > # Begin Function number 12 > logstart := proc(file) > fprintf(file,""); > # End Function number 12 > end; logstart := proc(file) fprintf(file, "") end proc > # Begin Function number 13 > logend := proc(file) > fprintf(file,"\n"); > # End Function number 13 > end; logend := proc(file) fprintf(file, "\n") end proc > # Begin Function number 14 > chk_data := proc() > global glob_max_iter,ALWAYS, glob_max_terms; > local errflag; > errflag := false; > > if ((glob_max_terms < 15) or (glob_max_terms > 512)) then # if number 13 > omniout_str(ALWAYS,"Illegal max_terms = -- Using 30"); > glob_max_terms := 30; > fi;# end if 13 > ; > if (glob_max_iter < 2) then # if number 13 > omniout_str(ALWAYS,"Illegal max_iter"); > errflag := true; > fi;# end if 13 > ; > if (errflag) then # if number 13 > > quit; > fi;# end if 13 > # End Function number 14 > end; chk_data := proc() local errflag; global glob_max_iter, ALWAYS, glob_max_terms; errflag := false; if glob_max_terms < 15 or 512 < glob_max_terms then omniout_str(ALWAYS, "Illegal max_terms = -- Using 30"); glob_max_terms := 30 end if; if glob_max_iter < 2 then omniout_str(ALWAYS, "Illegal max_iter"); errflag := true end if; if errflag then quit end if end proc > > # Begin Function number 15 > comp_expect_sec := proc(t_end2,t_start2,t2,clock_sec) > global glob_small_float; > local ms2, rrr, sec_left, sub1, sub2; > ; > ms2 := clock_sec; > sub1 := (t_end2-t_start2); > sub2 := (t2-t_start2); > if (sub1 = 0.0) then # if number 13 > sec_left := 0.0; > else > if (abs(sub2) > 0.0) then # if number 14 > rrr := (sub1/sub2); > sec_left := rrr * ms2 - ms2; > else > sec_left := 0.0; > fi;# end if 14 > fi;# end if 13 > ; > sec_left; > # End Function number 15 > end; comp_expect_sec := proc(t_end2, t_start2, t2, clock_sec) local ms2, rrr, sec_left, sub1, sub2; global glob_small_float; ms2 := clock_sec; sub1 := t_end2 - t_start2; sub2 := t2 - t_start2; if sub1 = 0. then sec_left := 0. else if 0. < abs(sub2) then rrr := sub1/sub2; sec_left := rrr*ms2 - ms2 else sec_left := 0. end if end if; sec_left end proc > > # Begin Function number 16 > comp_percent := proc(t_end2,t_start2,t2) > global glob_small_float; > local rrr, sub1, sub2; > sub1 := (t_end2-t_start2); > sub2 := (t2-t_start2); > if (abs(sub2) > glob_small_float) then # if number 13 > rrr := (100.0*sub2)/sub1; > else > rrr := 0.0; > fi;# end if 13 > ; > rrr > # End Function number 16 > end; comp_percent := proc(t_end2, t_start2, t2) local rrr, sub1, sub2; global glob_small_float; sub1 := t_end2 - t_start2; sub2 := t2 - t_start2; if glob_small_float < abs(sub2) then rrr := 100.0*sub2/sub1 else rrr := 0. end if; rrr end proc > > # Begin Function number 17 > factorial_1 := proc(nnn) > nnn!; > > # End Function number 17 > end; factorial_1 := proc(nnn) nnn! end proc > > # Begin Function number 18 > factorial_3 := proc(mmm2,nnn2) > (mmm2!)/(nnn2!); > > # End Function number 18 > end; factorial_3 := proc(mmm2, nnn2) mmm2!/nnn2! end proc > # Begin Function number 19 > convfp := proc(mmm) > (mmm); > > # End Function number 19 > end; convfp := proc(mmm) mmm end proc > # Begin Function number 20 > convfloat := proc(mmm) > (mmm); > > # End Function number 20 > end; convfloat := proc(mmm) mmm end proc > elapsed_time_seconds := proc() > time(); > end; elapsed_time_seconds := proc() time() end proc > > > > #END ATS LIBRARY BLOCK > #BEGIN USER DEF BLOCK > #BEGIN USER DEF BLOCK > exact_soln_x1 := proc(t) > local c1,c2,c3; > c1 := 0.0001; > c2 := 0.0002; > c3 := 0.0003; > 2.0 * c1 + 6.0 * c3 * exp(-t); > end; exact_soln_x1 := proc(t) local c1, c2, c3; c1 := 0.0001; c2 := 0.0002; c3 := 0.0003; 2.0*c1 + 6.0*c3*exp(-t) end proc > exact_soln_x2 := proc(t) > local c1,c2,c3; > c1 := 0.0001; > c2 := 0.0002; > c3 := 0.0003; > c1 + c2 * exp(2.0 * t) + c3 * exp(-t); > end; exact_soln_x2 := proc(t) local c1, c2, c3; c1 := 0.0001; c2 := 0.0002; c3 := 0.0003; c1 + c2*exp(2.0*t) + c3*exp(-t) end proc > exact_soln_x2p := proc(t) > local c1,c2,c3; > c1 := 0.0001; > c2 := 0.0002; > c3 := 0.0003; > 2.0 * c2 * exp(2.0 * t) - c3 * exp(-t); > end; exact_soln_x2p := proc(t) local c1, c2, c3; c1 := 0.0001; c2 := 0.0002; c3 := 0.0003; 2.0*c2*exp(2.0*t) - c3*exp(-t) end proc > #END USER DEF BLOCK > #END USER DEF BLOCK > #END OUTFILE5 > # Begin Function number 2 > mainprog := proc() > #BEGIN OUTFIEMAIN > local d1,d2,d3,d4,est_err_2,niii,done_once, > term,ord,order_diff,term_no,html_log_file, > rows,r_order,sub_iter,calc_term,iii,temp_sum,current_iter, > t_start,t_end > ,it, log10norm, max_terms, opt_iter, tmp; > #Top Generate Globals Definition > #Bottom Generate Globals Deninition > global > ALWAYS, > INFO, > glob_max_terms, > DEBUGMASSIVE, > DEBUGL, > glob_iolevel, > #Top Generate Globals Decl > glob_log10abserr, > glob_orig_start_sec, > glob_smallish_float, > glob_max_trunc_err, > glob_last_good_h, > glob_disp_incr, > glob_reached_optimal_h, > glob_initial_pass, > sec_in_min, > glob_clock_start_sec, > glob_clock_sec, > min_in_hour, > djd_debug, > glob_max_minutes, > glob_iter, > glob_start, > glob_max_iter, > glob_max_hours, > glob_relerr, > glob_abserr, > glob_log10_abserr, > glob_small_float, > glob_optimal_clock_start_sec, > glob_not_yet_finished, > glob_display_flag, > glob_warned, > glob_optimal_start, > glob_hmin, > glob_max_opt_iter, > glob_percent_done, > glob_normmax, > glob_max_sec, > glob_look_poles, > glob_optimal_done, > glob_almost_1, > years_in_century, > days_in_year, > glob_optimal_expect_sec, > glob_max_order, > glob_hmax, > glob_html_log, > glob_unchanged_h_cnt, > centuries_in_millinium, > glob_current_iter, > glob_curr_iter_when_opt, > glob_max_rel_trunc_err, > glob_log10_relerr, > glob_not_yet_start_msg, > hours_in_day, > glob_dump, > glob_warned2, > glob_dump_analytic, > glob_hmin_init, > glob_h, > glob_log10normmin, > glob_log10relerr, > MAX_UNCHANGED, > glob_no_eqs, > glob_large_float, > djd_debug2, > #Bottom Generate Globals Decl > #BEGIN CONST > array_const_3D0, > array_const_4D0, > array_const_0D0, > array_const_1, > array_const_2, > array_const_2D0, > #END CONST > array_pole, > array_norms, > array_1st_rel_error, > array_x1_init, > array_m1, > array_x2, > array_x1, > array_tmp10, > array_tmp11, > array_tmp12, > array_tmp13, > array_tmp14, > array_tmp15, > array_tmp16, > array_tmp17, > array_type_pole, > array_x2_init, > array_t, > array_last_rel_error, > array_tmp0, > array_tmp1, > array_tmp2, > array_tmp3, > array_tmp4, > array_tmp5, > array_tmp6, > array_tmp7, > array_tmp8, > array_tmp9, > array_x2_higher_work2, > array_x1_higher_work, > array_x2_higher_work, > array_poles, > array_real_pole, > array_x2_higher, > array_complex_pole, > array_x1_higher_work2, > array_x1_higher, > glob_last; > glob_last; > ALWAYS := 1; > INFO := 2; > DEBUGL := 3; > DEBUGMASSIVE := 4; > glob_iolevel := INFO; > ALWAYS := 1; > INFO := 2; > glob_max_terms := 30; > DEBUGMASSIVE := 4; > DEBUGL := 3; > glob_iolevel := 5; > glob_log10abserr := 0.0; > glob_orig_start_sec := 0.0; > glob_smallish_float := 0.1e-100; > glob_max_trunc_err := 0.1e-10; > glob_last_good_h := 0.1; > glob_disp_incr := 0.1; > glob_reached_optimal_h := false; > glob_initial_pass := true; > sec_in_min := 60.0; > glob_clock_start_sec := 0.0; > glob_clock_sec := 0.0; > min_in_hour := 60.0; > djd_debug := true; > glob_max_minutes := 0.0; > glob_iter := 0; > glob_start := 0; > glob_max_iter := 1000; > glob_max_hours := 0.0; > glob_relerr := 0.1e-10; > glob_abserr := 0.1e-10; > glob_log10_abserr := 0.1e-10; > glob_small_float := 0.1e-50; > glob_optimal_clock_start_sec := 0.0; > glob_not_yet_finished := true; > glob_display_flag := true; > glob_warned := false; > glob_optimal_start := 0.0; > glob_hmin := 0.00000000001; > glob_max_opt_iter := 10; > glob_percent_done := 0.0; > glob_normmax := 0.0; > glob_max_sec := 10000.0; > glob_look_poles := false; > glob_optimal_done := false; > glob_almost_1 := 0.9990; > years_in_century := 100.0; > days_in_year := 365.0; > glob_optimal_expect_sec := 0.1; > glob_max_order := 30; > glob_hmax := 1.0; > glob_html_log := true; > glob_unchanged_h_cnt := 0; > centuries_in_millinium := 10.0; > glob_current_iter := 0; > glob_curr_iter_when_opt := 0; > glob_max_rel_trunc_err := 0.1e-10; > glob_log10_relerr := 0.1e-10; > glob_not_yet_start_msg := true; > hours_in_day := 24.0; > glob_dump := false; > glob_warned2 := false; > glob_dump_analytic := false; > glob_hmin_init := 0.001; > glob_h := 0.1; > glob_log10normmin := 0.1; > glob_log10relerr := 0.0; > MAX_UNCHANGED := 10; > glob_no_eqs := 0; > glob_large_float := 9.0e100; > djd_debug2 := true; > #Write Set Defaults > glob_orig_start_sec := elapsed_time_seconds(); > MAX_UNCHANGED := 10; > glob_curr_iter_when_opt := 0; > glob_display_flag := true; > glob_max_order := 2; > glob_no_eqs := 2; > glob_iter := -1; > opt_iter := -1; > glob_max_iter := 50000; > glob_max_hours := 0.0; > glob_max_minutes := 15.0; > omniout_str(ALWAYS,"##############ECHO OF PROBLEM#################"); > omniout_str(ALWAYS,"##############temp/complicatedrevpostode.ode#################"); > omniout_str(ALWAYS,"diff (x2,t,2) = 3.0 * diff(x2,t,1) - 2.0 * x2 - diff(x1,t,2) - diff (x1,t,1) + x1;"); > omniout_str(ALWAYS,"diff (x1,t,1) = 4.0 * x2 - 2.0 * diff (x2,t ,1) - 2.0 * x1;"); > omniout_str(ALWAYS,"!"); > omniout_str(ALWAYS,"#BEGIN FIRST INPUT BLOCK"); > omniout_str(ALWAYS,"Digits := 32;"); > omniout_str(ALWAYS,"max_terms := 30;"); > omniout_str(ALWAYS,"#END FIRST INPUT BLOCK"); > omniout_str(ALWAYS,"!"); > omniout_str(ALWAYS,"#BEGIN SECOND INPUT BLOCK"); > omniout_str(ALWAYS,"t_start := 0.5;"); > omniout_str(ALWAYS,"t_end := 5.0;"); > omniout_str(ALWAYS,"array_x1_init[1] := exact_soln_x1(t_start);"); > omniout_str(ALWAYS,"array_x2_init[1] := exact_soln_x2(t_start);"); > omniout_str(ALWAYS,"array_x2_init[2] := exact_soln_x2p(t_start);"); > omniout_str(ALWAYS,"glob_h := 0.00001 ;"); > omniout_str(ALWAYS,"glob_look_poles := true;"); > omniout_str(ALWAYS,"glob_max_iter := 10;"); > omniout_str(ALWAYS,"#END SECOND INPUT BLOCK"); > omniout_str(ALWAYS,"#BEGIN OVERRIDE BLOCK"); > omniout_str(ALWAYS,"glob_h := 0.0005 ;"); > omniout_str(ALWAYS,"glob_look_poles := true;"); > omniout_str(ALWAYS,"glob_max_iter := 100;"); > omniout_str(ALWAYS,"glob_max_minutes := 15;"); > omniout_str(ALWAYS,"#END OVERRIDE BLOCK"); > omniout_str(ALWAYS,"!"); > omniout_str(ALWAYS,"#BEGIN USER DEF BLOCK"); > omniout_str(ALWAYS,"exact_soln_x1 := proc(t)"); > omniout_str(ALWAYS,"local c1,c2,c3;"); > omniout_str(ALWAYS,"c1 := 0.0001;"); > omniout_str(ALWAYS,"c2 := 0.0002;"); > omniout_str(ALWAYS,"c3 := 0.0003;"); > omniout_str(ALWAYS,"2.0 * c1 + 6.0 * c3 * exp(-t);"); > omniout_str(ALWAYS,"end;"); > omniout_str(ALWAYS,"exact_soln_x2 := proc(t)"); > omniout_str(ALWAYS,"local c1,c2,c3;"); > omniout_str(ALWAYS,"c1 := 0.0001;"); > omniout_str(ALWAYS,"c2 := 0.0002;"); > omniout_str(ALWAYS,"c3 := 0.0003;"); > omniout_str(ALWAYS,"c1 + c2 * exp(2.0 * t) + c3 * exp(-t);"); > omniout_str(ALWAYS,"end;"); > omniout_str(ALWAYS,"exact_soln_x2p := proc(t)"); > omniout_str(ALWAYS,"local c1,c2,c3;"); > omniout_str(ALWAYS,"c1 := 0.0001;"); > omniout_str(ALWAYS,"c2 := 0.0002;"); > omniout_str(ALWAYS,"c3 := 0.0003;"); > omniout_str(ALWAYS,"2.0 * c2 * exp(2.0 * t) - c3 * exp(-t);"); > omniout_str(ALWAYS,"end;"); > omniout_str(ALWAYS,"#END USER DEF BLOCK"); > omniout_str(ALWAYS,"#######END OF ECHO OF PROBLEM#################"); > glob_unchanged_h_cnt := 0; > glob_warned := false; > glob_warned2 := false; > glob_small_float := 1.0e-200; > glob_smallish_float := 1.0e-64; > glob_large_float := 1.0e100; > glob_almost_1 := 0.99; > glob_log10_abserr := -8.0; > glob_log10_relerr := -8.0; > glob_hmax := 0.01; > #BEGIN FIRST INPUT BLOCK > #BEGIN FIRST INPUT BLOCK > Digits := 32; > max_terms := 30; > #END FIRST INPUT BLOCK > #END FIRST INPUT BLOCK > #START OF INITS AFTER INPUT BLOCK > glob_max_terms := max_terms; > glob_html_log := true; > #END OF INITS AFTER INPUT BLOCK > array_pole:= Array(1..(max_terms + 1),[]); > array_norms:= Array(1..(max_terms + 1),[]); > array_1st_rel_error:= Array(1..(max_terms + 1),[]); > array_x1_init:= Array(1..(max_terms + 1),[]); > array_m1:= Array(1..(max_terms + 1),[]); > array_x2:= Array(1..(max_terms + 1),[]); > array_x1:= Array(1..(max_terms + 1),[]); > array_tmp10:= Array(1..(max_terms + 1),[]); > array_tmp11:= Array(1..(max_terms + 1),[]); > array_tmp12:= Array(1..(max_terms + 1),[]); > array_tmp13:= Array(1..(max_terms + 1),[]); > array_tmp14:= Array(1..(max_terms + 1),[]); > array_tmp15:= Array(1..(max_terms + 1),[]); > array_tmp16:= Array(1..(max_terms + 1),[]); > array_tmp17:= Array(1..(max_terms + 1),[]); > array_type_pole:= Array(1..(max_terms + 1),[]); > array_x2_init:= Array(1..(max_terms + 1),[]); > array_t:= Array(1..(max_terms + 1),[]); > array_last_rel_error:= Array(1..(max_terms + 1),[]); > array_tmp0:= Array(1..(max_terms + 1),[]); > array_tmp1:= Array(1..(max_terms + 1),[]); > array_tmp2:= Array(1..(max_terms + 1),[]); > array_tmp3:= Array(1..(max_terms + 1),[]); > array_tmp4:= Array(1..(max_terms + 1),[]); > array_tmp5:= Array(1..(max_terms + 1),[]); > array_tmp6:= Array(1..(max_terms + 1),[]); > array_tmp7:= Array(1..(max_terms + 1),[]); > array_tmp8:= Array(1..(max_terms + 1),[]); > array_tmp9:= Array(1..(max_terms + 1),[]); > array_x2_higher_work2 := Array(1..(3+ 1) ,(1..max_terms+ 1),[]); > array_x1_higher_work := Array(1..(2+ 1) ,(1..max_terms+ 1),[]); > array_x2_higher_work := Array(1..(3+ 1) ,(1..max_terms+ 1),[]); > array_poles := Array(1..(2+ 1) ,(1..3+ 1),[]); > array_real_pole := Array(1..(2+ 1) ,(1..3+ 1),[]); > array_x2_higher := Array(1..(3+ 1) ,(1..max_terms+ 1),[]); > array_complex_pole := Array(1..(2+ 1) ,(1..3+ 1),[]); > array_x1_higher_work2 := Array(1..(2+ 1) ,(1..max_terms+ 1),[]); > array_x1_higher := Array(1..(2+ 1) ,(1..max_terms+ 1),[]); > term := 1; > while term <= max_terms do # do number 2 > array_pole[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_norms[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_1st_rel_error[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_x1_init[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_m1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_x2[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_x1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp10[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp11[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp12[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp13[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp14[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp15[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp16[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp17[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_type_pole[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_x2_init[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_t[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_last_rel_error[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp0[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp2[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp3[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp4[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp5[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp6[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp7[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp8[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > term := 1; > while term <= max_terms do # do number 2 > array_tmp9[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=3 do # do number 2 > term := 1; > while term <= max_terms do # do number 3 > array_x2_higher_work2[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=2 do # do number 2 > term := 1; > while term <= max_terms do # do number 3 > array_x1_higher_work[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=3 do # do number 2 > term := 1; > while term <= max_terms do # do number 3 > array_x2_higher_work[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=2 do # do number 2 > term := 1; > while term <= 3 do # do number 3 > array_poles[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=2 do # do number 2 > term := 1; > while term <= 3 do # do number 3 > array_real_pole[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=3 do # do number 2 > term := 1; > while term <= max_terms do # do number 3 > array_x2_higher[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=2 do # do number 2 > term := 1; > while term <= 3 do # do number 3 > array_complex_pole[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=2 do # do number 2 > term := 1; > while term <= max_terms do # do number 3 > array_x1_higher_work2[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > ord := 1; > while ord <=2 do # do number 2 > term := 1; > while term <= max_terms do # do number 3 > array_x1_higher[ord,term] := 0.0; > term := term + 1; > od;# end do number 3 > ; > ord := ord + 1; > od;# end do number 2 > ; > #BEGIN ARRAYS DEFINED AND INITIALIZATED > array_x1 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_x1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_x2 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_x2[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp17 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp17[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp16 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp16[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp15 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp15[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp14 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp14[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp13 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp13[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp12 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp12[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp11 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp11[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp10 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp10[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_t := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_t[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp9 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp9[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp8 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp8[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp7 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp7[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp6 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp6[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp5 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp5[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp4 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp4[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp3 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp3[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp2 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp2[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp1 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_tmp0 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_tmp0[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_3D0 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_const_3D0[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_3D0[1] := 3.0; > array_const_4D0 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_const_4D0[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_4D0[1] := 4.0; > array_const_0D0 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_const_0D0[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_0D0[1] := 0.0; > array_const_1 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_const_1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_1[1] := 1; > array_const_2 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_const_2[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_2[1] := 2; > array_const_2D0 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms + 1 do # do number 2 > array_const_2D0[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_const_2D0[1] := 2.0; > array_m1 := Array(1..(max_terms+1 + 1),[]); > term := 1; > while term <= max_terms do # do number 2 > array_m1[term] := 0.0; > term := term + 1; > od;# end do number 2 > ; > array_m1[1] := -1.0; > #END ARRAYS DEFINED AND INITIALIZATED > #TOP SECOND INPUT BLOCK > #BEGIN SECOND INPUT BLOCK > #BEGIN SECOND INPUT BLOCK > t_start := 0.5; > t_end := 5.0; > array_x1_init[1] := exact_soln_x1(t_start); > array_x2_init[1] := exact_soln_x2(t_start); > array_x2_init[2] := exact_soln_x2p(t_start); > glob_h := 0.00001 ; > glob_look_poles := true; > glob_max_iter := 10; > #END SECOND INPUT BLOCK > #BEGIN OVERRIDE BLOCK > glob_h := 0.0005 ; > glob_look_poles := true; > glob_max_iter := 100; > glob_max_minutes := 15; > #END OVERRIDE BLOCK > #END SECOND INPUT BLOCK > #BEGIN INITS AFTER SECOND INPUT BLOCK > glob_last_good_h := glob_h; > glob_max_terms := max_terms; > glob_max_sec := convfloat(60.0) * convfloat(glob_max_minutes) + convfloat(3600.0) * convfloat(glob_max_hours); > glob_abserr := 10.0 ^ (glob_log10_abserr); > glob_relerr := 10.0 ^ (glob_log10_relerr); > chk_data(); > #AFTER INITS AFTER SECOND INPUT BLOCK > if glob_html_log then # if number 3 > html_log_file := fopen("html/entry.html",WRITE,TEXT); > fi;# end if 3 > ; > #BEGIN SOLUTION CODE > omniout_str(ALWAYS,"START of Soultion"); > #Start Series -- INITIALIZE FOR SOLUTION > array_t[1] := t_start; > array_t[2] := glob_h; > order_diff := 2; > #Start Series array_x2 > term_no := 1; > while (term_no <= order_diff) do # do number 2 > array_x2[term_no] := array_x2_init[term_no] * glob_h ^ (term_no - 1) / factorial_1(term_no - 1); > term_no := term_no + 1; > od;# end do number 2 > ; > rows := order_diff; > r_order := 1; > while (r_order <= rows) do # do number 2 > term_no := 1; > while (term_no <= (rows - r_order + 1)) do # do number 3 > it := term_no + r_order - 1; > array_x2_higher[r_order,term_no] := array_x2_init[it]* (glob_h ^ (term_no - 1)) / ((factorial_1(term_no - 1))); > term_no := term_no + 1; > od;# end do number 3 > ; > r_order := r_order + 1; > od;# end do number 2 > ; > order_diff := 1; > #Start Series array_x1 > term_no := 1; > while (term_no <= order_diff) do # do number 2 > array_x1[term_no] := array_x1_init[term_no] * glob_h ^ (term_no - 1) / factorial_1(term_no - 1); > term_no := term_no + 1; > od;# end do number 2 > ; > rows := order_diff; > r_order := 1; > while (r_order <= rows) do # do number 2 > term_no := 1; > while (term_no <= (rows - r_order + 1)) do # do number 3 > it := term_no + r_order - 1; > array_x1_higher[r_order,term_no] := array_x1_init[it]* (glob_h ^ (term_no - 1)) / ((factorial_1(term_no - 1))); > term_no := term_no + 1; > od;# end do number 3 > ; > r_order := r_order + 1; > od;# end do number 2 > ; > current_iter := 1; > glob_clock_start_sec := elapsed_time_seconds(); > start_array_x2(); > if (abs(array_x2_higher[1,1]) > glob_small_float) then # if number 3 > tmp := abs(array_x2_higher[1,1]); > log10norm := (log10(tmp)); > if (log10norm < glob_log10normmin) then # if number 4 > glob_log10normmin := log10norm; > fi;# end if 4 > fi;# end if 3 > ; > display_alot(current_iter) > ; > start_array_x1(); > if (abs(array_x1_higher[1,1]) > glob_small_float) then # if number 3 > tmp := abs(array_x1_higher[1,1]); > log10norm := (log10(tmp)); > if (log10norm < glob_log10normmin) then # if number 4 > glob_log10normmin := log10norm; > fi;# end if 4 > fi;# end if 3 > ; > display_alot(current_iter) > ; > glob_clock_sec := elapsed_time_seconds(); > glob_current_iter := 0; > glob_iter := 0; > omniout_str(DEBUGL," "); > glob_reached_optimal_h := true; > glob_optimal_clock_start_sec := elapsed_time_seconds(); > while ((glob_current_iter < glob_max_iter) and (array_t[1] <= t_end ) and ((convfloat(glob_clock_sec) - convfloat(glob_orig_start_sec)) < convfloat(glob_max_sec))) do # do number 2 > #left paren 0001C > omniout_str(INFO," "); > omniout_str(INFO,"TOP MAIN SOLVE Loop"); > glob_iter := glob_iter + 1; > glob_clock_sec := elapsed_time_seconds(); > glob_current_iter := glob_current_iter + 1; > atomall(); > if (glob_look_poles) then # if number 3 > #left paren 0004C > check_for_pole(); > fi;# end if 3 > ;#was right paren 0004C > array_t[1] := array_t[1] + glob_h; > array_t[2] := glob_h; > order_diff := 2; > #Jump Series array_x2 > #START PART 1 SUM AND ADJUST > #START SUM AND ADJUST EQ =1 > #sum_and_adjust array_x2 > order_diff := 2; > #BEFORE ADJUST SUBSERIES EQ =1 > order_diff := 2; > ord := 3; > calc_term := 1; > #adjust_subseriesarray_x2 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_x2_higher_work[3,iii] := array_x2_higher[3,iii] / (glob_h ^ (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =1 > #BEFORE SUM SUBSERIES EQ =1 > order_diff := 2; > temp_sum := 0.0; > ord := 3; > calc_term := 1; > #sum_subseriesarray_x2 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_x2_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_x2_higher_work2[ord,calc_term] := temp_sum * (glob_h ^ (calc_term - 1)) / (convfp(calc_term - 1)!); > #AFTER SUM SUBSERIES EQ =1 > #BEFORE ADJUST SUBSERIES EQ =1 > order_diff := 2; > ord := 2; > calc_term := 2; > #adjust_subseriesarray_x2 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_x2_higher_work[2,iii] := array_x2_higher[2,iii] / (glob_h ^ (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =1 > #BEFORE SUM SUBSERIES EQ =1 > order_diff := 2; > temp_sum := 0.0; > ord := 2; > calc_term := 2; > #sum_subseriesarray_x2 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_x2_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_x2_higher_work2[ord,calc_term] := temp_sum * (glob_h ^ (calc_term - 1)) / (convfp(calc_term - 1)!); > #AFTER SUM SUBSERIES EQ =1 > #BEFORE ADJUST SUBSERIES EQ =1 > order_diff := 2; > ord := 2; > calc_term := 1; > #adjust_subseriesarray_x2 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_x2_higher_work[2,iii] := array_x2_higher[2,iii] / (glob_h ^ (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =1 > #BEFORE SUM SUBSERIES EQ =1 > order_diff := 2; > temp_sum := 0.0; > ord := 2; > calc_term := 1; > #sum_subseriesarray_x2 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_x2_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_x2_higher_work2[ord,calc_term] := temp_sum * (glob_h ^ (calc_term - 1)) / (convfp(calc_term - 1)!); > #AFTER SUM SUBSERIES EQ =1 > #BEFORE ADJUST SUBSERIES EQ =1 > order_diff := 2; > ord := 1; > calc_term := 3; > #adjust_subseriesarray_x2 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_x2_higher_work[1,iii] := array_x2_higher[1,iii] / (glob_h ^ (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =1 > #BEFORE SUM SUBSERIES EQ =1 > order_diff := 2; > temp_sum := 0.0; > ord := 1; > calc_term := 3; > #sum_subseriesarray_x2 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_x2_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_x2_higher_work2[ord,calc_term] := temp_sum * (glob_h ^ (calc_term - 1)) / (convfp(calc_term - 1)!); > #AFTER SUM SUBSERIES EQ =1 > #BEFORE ADJUST SUBSERIES EQ =1 > order_diff := 2; > ord := 1; > calc_term := 2; > #adjust_subseriesarray_x2 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_x2_higher_work[1,iii] := array_x2_higher[1,iii] / (glob_h ^ (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =1 > #BEFORE SUM SUBSERIES EQ =1 > order_diff := 2; > temp_sum := 0.0; > ord := 1; > calc_term := 2; > #sum_subseriesarray_x2 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_x2_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_x2_higher_work2[ord,calc_term] := temp_sum * (glob_h ^ (calc_term - 1)) / (convfp(calc_term - 1)!); > #AFTER SUM SUBSERIES EQ =1 > #BEFORE ADJUST SUBSERIES EQ =1 > order_diff := 2; > ord := 1; > calc_term := 1; > #adjust_subseriesarray_x2 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_x2_higher_work[1,iii] := array_x2_higher[1,iii] / (glob_h ^ (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =1 > #BEFORE SUM SUBSERIES EQ =1 > order_diff := 2; > temp_sum := 0.0; > ord := 1; > calc_term := 1; > #sum_subseriesarray_x2 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_x2_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_x2_higher_work2[ord,calc_term] := temp_sum * (glob_h ^ (calc_term - 1)) / (convfp(calc_term - 1)!); > #AFTER SUM SUBSERIES EQ =1 > #END SUM AND ADJUST EQ =1 > #END PART 1 > #START PART 2 MOVE TERMS to REGULAR Array > term_no := glob_max_terms; > while (term_no >= 1) do # do number 3 > array_x2[term_no] := array_x2_higher_work2[1,term_no]; > ord := 1; > while ord <= order_diff do # do number 4 > array_x2_higher[ord,term_no] := array_x2_higher_work2[ord,term_no]; > ord := ord + 1; > od;# end do number 4 > ; > term_no := term_no - 1; > od;# end do number 3 > ; > #END PART 2 HEVE MOVED TERMS to REGULAR Array > order_diff := 1; > #Jump Series array_x1 > #START PART 1 SUM AND ADJUST > #START SUM AND ADJUST EQ =2 > #sum_and_adjust array_x1 > order_diff := 1; > #BEFORE ADJUST SUBSERIES EQ =2 > order_diff := 1; > ord := 2; > calc_term := 1; > #adjust_subseriesarray_x1 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_x1_higher_work[2,iii] := array_x1_higher[2,iii] / (glob_h ^ (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =2 > #BEFORE SUM SUBSERIES EQ =2 > order_diff := 1; > temp_sum := 0.0; > ord := 2; > calc_term := 1; > #sum_subseriesarray_x1 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_x1_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_x1_higher_work2[ord,calc_term] := temp_sum * (glob_h ^ (calc_term - 1)) / (convfp(calc_term - 1)!); > #AFTER SUM SUBSERIES EQ =2 > #BEFORE ADJUST SUBSERIES EQ =2 > order_diff := 1; > ord := 1; > calc_term := 2; > #adjust_subseriesarray_x1 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_x1_higher_work[1,iii] := array_x1_higher[1,iii] / (glob_h ^ (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =2 > #BEFORE SUM SUBSERIES EQ =2 > order_diff := 1; > temp_sum := 0.0; > ord := 1; > calc_term := 2; > #sum_subseriesarray_x1 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_x1_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_x1_higher_work2[ord,calc_term] := temp_sum * (glob_h ^ (calc_term - 1)) / (convfp(calc_term - 1)!); > #AFTER SUM SUBSERIES EQ =2 > #BEFORE ADJUST SUBSERIES EQ =2 > order_diff := 1; > ord := 1; > calc_term := 1; > #adjust_subseriesarray_x1 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > array_x1_higher_work[1,iii] := array_x1_higher[1,iii] / (glob_h ^ (calc_term - 1)) / factorial_3(iii - calc_term , iii - 1); > iii := iii - 1; > od;# end do number 3 > ; > #AFTER ADJUST SUBSERIES EQ =2 > #BEFORE SUM SUBSERIES EQ =2 > order_diff := 1; > temp_sum := 0.0; > ord := 1; > calc_term := 1; > #sum_subseriesarray_x1 > iii := glob_max_terms; > while (iii >= calc_term) do # do number 3 > temp_sum := temp_sum + array_x1_higher_work[ord,iii]; > iii := iii - 1; > od;# end do number 3 > ; > array_x1_higher_work2[ord,calc_term] := temp_sum * (glob_h ^ (calc_term - 1)) / (convfp(calc_term - 1)!); > #AFTER SUM SUBSERIES EQ =2 > #END SUM AND ADJUST EQ =2 > #END PART 1 > #START PART 2 MOVE TERMS to REGULAR Array > term_no := glob_max_terms; > while (term_no >= 1) do # do number 3 > array_x1[term_no] := array_x1_higher_work2[1,term_no]; > ord := 1; > while ord <= order_diff do # do number 4 > array_x1_higher[ord,term_no] := array_x1_higher_work2[ord,term_no]; > ord := ord + 1; > od;# end do number 4 > ; > term_no := term_no - 1; > od;# end do number 3 > ; > #END PART 2 HEVE MOVED TERMS to REGULAR Array > display_alot(current_iter) > ; > od;# end do number 2 > ;#right paren 0001C > omniout_str(ALWAYS,"Finished!"); > if (glob_iter >= glob_max_iter) then # if number 3 > omniout_str(ALWAYS,"Maximum Iterations Reached before Solution Completed!") > fi;# end if 3 > ; > if (elapsed_time_seconds() - convfloat(glob_orig_start_sec) >= convfloat(glob_max_sec )) then # if number 3 > omniout_str(ALWAYS,"Maximum Time Reached before Solution Completed!") > fi;# end if 3 > ; > glob_clock_sec := elapsed_time_seconds(); > omniout_str(INFO,"diff (x2,t,2) = 3.0 * diff(x2,t,1) - 2.0 * x2 - diff(x1,t,2) - diff (x1,t,1) + x1;"); > omniout_str(INFO,"diff (x1,t,1) = 4.0 * x2 - 2.0 * diff (x2,t ,1) - 2.0 * x1;"); > omniout_int(INFO,"Iterations ",32,glob_iter,4," ") > ; > prog_report(t_start,t_end); > if glob_html_log then # if number 3 > logstart(html_log_file); > logitem_str(html_log_file,"2012-06-02T01:56:50-05:00") > ; > logitem_str(html_log_file,"Maple") > ; > logitem_str(html_log_file,"complicatedrev") > ; > logitem_str(html_log_file,"diff (x2,t,2) = 3.0 * diff(x2,t,1) - 2.0 * x2 - diff(x1,t,2) - diff (x1,t,1) + x1;") > ; > logitem_float(html_log_file,t_start) > ; > logitem_float(html_log_file,t_end) > ; > logitem_float(html_log_file,array_t[1]) > ; > logitem_float(html_log_file,glob_h) > ; > logitem_integer(html_log_file,Digits) > ; > ; > logitem_integer(html_log_file,glob_max_terms) > ; > logitem_float(html_log_file,array_1st_rel_error[1]) > ; > logitem_float(html_log_file,array_last_rel_error[1]) > ; > logitem_integer(html_log_file,glob_iter) > ; > logitem_pole(html_log_file,array_type_pole[1]) > ; > if array_type_pole[1] = 1 or array_type_pole[1] = 2 then # if number 4 > logitem_float(html_log_file,array_pole[1]) > ; > logitem_float(html_log_file,array_pole[2]) > ; > 0; > else > logitem_str(html_log_file,"NA") > ; > logitem_str(html_log_file,"NA") > ; > 0; > fi;# end if 4 > ; > logitem_time(html_log_file,convfloat(glob_clock_sec)) > ; > if glob_percent_done < 100.0 then # if number 4 > logitem_time(html_log_file,convfloat(glob_optimal_expect_sec)) > ; > 0 > else > logitem_str(html_log_file,"Done") > ; > 0 > fi;# end if 4 > ; > log_revs(html_log_file," 076 ") > ; > logitem_str(html_log_file,"complicatedrev diffeq.mxt") > ; > logitem_str(html_log_file,"complicatedrev maple results") > ; > logitem_str(html_log_file,"sub iter once eqs reversed") > ; > logend(html_log_file) > ; > logditto(html_log_file) > ; > logditto(html_log_file) > ; > logditto(html_log_file) > ; > logitem_str(html_log_file,"diff (x1,t,1) = 4.0 * x2 - 2.0 * diff (x2,t ,1) - 2.0 * x1;") > ; > logditto(html_log_file) > ; > logditto(html_log_file) > ; > logditto(html_log_file) > ; > logditto(html_log_file) > ; > logditto(html_log_file) > ; > ; > logditto(html_log_file) > ; > logitem_float(html_log_file,array_1st_rel_error[2]) > ; > logitem_float(html_log_file,array_last_rel_error[2]) > ; > logditto(html_log_file) > ; > logitem_pole(html_log_file,array_type_pole[2]) > ; > if array_type_pole[2] = 1 or array_type_pole[2] = 2 then # if number 4 > logitem_float(html_log_file,array_pole[1]) > ; > logitem_float(html_log_file,array_pole[2]) > ; > 0; > else > logitem_str(html_log_file,"NA") > ; > logitem_str(html_log_file,"NA") > ; > 0; > fi;# end if 4 > ; > logditto(html_log_file) > ; > if glob_percent_done < 100.0 then # if number 4 > logditto(html_log_file) > ; > 0 > else > logditto(html_log_file) > ; > 0 > fi;# end if 4 > ; > logditto(html_log_file); > ; > logditto(html_log_file) > ; > logditto(html_log_file) > ; > logditto(html_log_file) > ; > logend(html_log_file) > ; > ; > fi;# end if 3 > ; > if glob_html_log then # if number 3 > fclose(html_log_file); > fi;# end if 3 > ; > ;; > #END OUTFILEMAIN > # End Function number 8 > end; mainprog := proc() local d1, d2, d3, d4, est_err_2, niii, done_once, term, ord, order_diff, term_no, html_log_file, rows, r_order, sub_iter, calc_term, iii, temp_sum, current_iter, t_start, t_end, it, log10norm, max_terms, opt_iter, tmp; global ALWAYS, INFO, glob_max_terms, DEBUGMASSIVE, DEBUGL, glob_iolevel, glob_log10abserr, glob_orig_start_sec, glob_smallish_float, glob_max_trunc_err, glob_last_good_h, glob_disp_incr, glob_reached_optimal_h, glob_initial_pass, sec_in_min, glob_clock_start_sec, glob_clock_sec, min_in_hour, djd_debug, glob_max_minutes, glob_iter, glob_start, glob_max_iter, glob_max_hours, glob_relerr, glob_abserr, glob_log10_abserr, glob_small_float, glob_optimal_clock_start_sec, glob_not_yet_finished, glob_display_flag, glob_warned, glob_optimal_start, glob_hmin, glob_max_opt_iter, glob_percent_done, glob_normmax, glob_max_sec, glob_look_poles, glob_optimal_done, glob_almost_1, years_in_century, days_in_year, glob_optimal_expect_sec, glob_max_order, glob_hmax, glob_html_log, glob_unchanged_h_cnt, centuries_in_millinium, glob_current_iter, glob_curr_iter_when_opt, glob_max_rel_trunc_err, glob_log10_relerr, glob_not_yet_start_msg, hours_in_day, glob_dump, glob_warned2, glob_dump_analytic, glob_hmin_init, glob_h, glob_log10normmin, glob_log10relerr, MAX_UNCHANGED, glob_no_eqs, glob_large_float, djd_debug2, array_const_3D0, array_const_4D0, array_const_0D0, array_const_1, array_const_2, array_const_2D0, array_pole, array_norms, array_1st_rel_error, array_x1_init, array_m1, array_x2, array_x1, array_tmp10, array_tmp11, array_tmp12, array_tmp13, array_tmp14, array_tmp15, array_tmp16, array_tmp17, array_type_pole, array_x2_init, array_t, array_last_rel_error, array_tmp0, array_tmp1, array_tmp2, array_tmp3, array_tmp4, array_tmp5, array_tmp6, array_tmp7, array_tmp8, array_tmp9, array_x2_higher_work2, array_x1_higher_work, array_x2_higher_work, array_poles, array_real_pole, array_x2_higher, array_complex_pole, array_x1_higher_work2, array_x1_higher, glob_last; glob_last; ALWAYS := 1; INFO := 2; DEBUGL := 3; DEBUGMASSIVE := 4; glob_iolevel := INFO; ALWAYS := 1; INFO := 2; glob_max_terms := 30; DEBUGMASSIVE := 4; DEBUGL := 3; glob_iolevel := 5; glob_log10abserr := 0.; glob_orig_start_sec := 0.; glob_smallish_float := 0.1*10^(-100); glob_max_trunc_err := 0.1*10^(-10); glob_last_good_h := 0.1; glob_disp_incr := 0.1; glob_reached_optimal_h := false; glob_initial_pass := true; sec_in_min := 60.0; glob_clock_start_sec := 0.; glob_clock_sec := 0.; min_in_hour := 60.0; djd_debug := true; glob_max_minutes := 0.; glob_iter := 0; glob_start := 0; glob_max_iter := 1000; glob_max_hours := 0.; glob_relerr := 0.1*10^(-10); glob_abserr := 0.1*10^(-10); glob_log10_abserr := 0.1*10^(-10); glob_small_float := 0.1*10^(-50); glob_optimal_clock_start_sec := 0.; glob_not_yet_finished := true; glob_display_flag := true; glob_warned := false; glob_optimal_start := 0.; glob_hmin := 0.1*10^(-10); glob_max_opt_iter := 10; glob_percent_done := 0.; glob_normmax := 0.; glob_max_sec := 10000.0; glob_look_poles := false; glob_optimal_done := false; glob_almost_1 := 0.9990; years_in_century := 100.0; days_in_year := 365.0; glob_optimal_expect_sec := 0.1; glob_max_order := 30; glob_hmax := 1.0; glob_html_log := true; glob_unchanged_h_cnt := 0; centuries_in_millinium := 10.0; glob_current_iter := 0; glob_curr_iter_when_opt := 0; glob_max_rel_trunc_err := 0.1*10^(-10); glob_log10_relerr := 0.1*10^(-10); glob_not_yet_start_msg := true; hours_in_day := 24.0; glob_dump := false; glob_warned2 := false; glob_dump_analytic := false; glob_hmin_init := 0.001; glob_h := 0.1; glob_log10normmin := 0.1; glob_log10relerr := 0.; MAX_UNCHANGED := 10; glob_no_eqs := 0; glob_large_float := 0.90*10^101; djd_debug2 := true; glob_orig_start_sec := elapsed_time_seconds(); MAX_UNCHANGED := 10; glob_curr_iter_when_opt := 0; glob_display_flag := true; glob_max_order := 2; glob_no_eqs := 2; glob_iter := -1; opt_iter := -1; glob_max_iter := 50000; glob_max_hours := 0.; glob_max_minutes := 15.0; omniout_str(ALWAYS, "##############ECHO OF PROBLEM#################"); omniout_str(ALWAYS, "##############temp/complicatedrevpostode.ode#################"); omniout_str(ALWAYS, "diff (x2,t,2) = 3.0 * diff(x2,t,1) - 2.0 * x2 - \ diff(x1,t,2) - diff (x1,t,1) + x1;"); omniout_str(ALWAYS, "diff (x1,t,1) = 4.0 * x2 - 2.0 * diff (x2,t ,1) - 2.0 * x1;"); omniout_str(ALWAYS, "!"); omniout_str(ALWAYS, "#BEGIN FIRST INPUT BLOCK"); omniout_str(ALWAYS, "Digits := 32;"); omniout_str(ALWAYS, "max_terms := 30;"); omniout_str(ALWAYS, "#END FIRST INPUT BLOCK"); omniout_str(ALWAYS, "!"); omniout_str(ALWAYS, "#BEGIN SECOND INPUT BLOCK"); omniout_str(ALWAYS, "t_start := 0.5;"); omniout_str(ALWAYS, "t_end := 5.0;"); omniout_str(ALWAYS, "array_x1_init[1] := exact_soln_x1(t_start);"); omniout_str(ALWAYS, "array_x2_init[1] := exact_soln_x2(t_start);"); omniout_str(ALWAYS, "array_x2_init[2] := exact_soln_x2p(t_start);"); omniout_str(ALWAYS, "glob_h := 0.00001 ;"); omniout_str(ALWAYS, "glob_look_poles := true;"); omniout_str(ALWAYS, "glob_max_iter := 10;"); omniout_str(ALWAYS, "#END SECOND INPUT BLOCK"); omniout_str(ALWAYS, "#BEGIN OVERRIDE BLOCK"); omniout_str(ALWAYS, "glob_h := 0.0005 ;"); omniout_str(ALWAYS, "glob_look_poles := true;"); omniout_str(ALWAYS, "glob_max_iter := 100;"); omniout_str(ALWAYS, "glob_max_minutes := 15;"); omniout_str(ALWAYS, "#END OVERRIDE BLOCK"); omniout_str(ALWAYS, "!"); omniout_str(ALWAYS, "#BEGIN USER DEF BLOCK"); omniout_str(ALWAYS, "exact_soln_x1 := proc(t)"); omniout_str(ALWAYS, "local c1,c2,c3;"); omniout_str(ALWAYS, "c1 := 0.0001;"); omniout_str(ALWAYS, "c2 := 0.0002;"); omniout_str(ALWAYS, "c3 := 0.0003;"); omniout_str(ALWAYS, "2.0 * c1 + 6.0 * c3 * exp(-t);"); omniout_str(ALWAYS, "end;"); omniout_str(ALWAYS, "exact_soln_x2 := proc(t)"); omniout_str(ALWAYS, "local c1,c2,c3;"); omniout_str(ALWAYS, "c1 := 0.0001;"); omniout_str(ALWAYS, "c2 := 0.0002;"); omniout_str(ALWAYS, "c3 := 0.0003;"); omniout_str(ALWAYS, "c1 + c2 * exp(2.0 * t) + c3 * exp(-t);"); omniout_str(ALWAYS, "end;"); omniout_str(ALWAYS, "exact_soln_x2p := proc(t)"); omniout_str(ALWAYS, "local c1,c2,c3;"); omniout_str(ALWAYS, "c1 := 0.0001;"); omniout_str(ALWAYS, "c2 := 0.0002;"); omniout_str(ALWAYS, "c3 := 0.0003;"); omniout_str(ALWAYS, "2.0 * c2 * exp(2.0 * t) - c3 * exp(-t);"); omniout_str(ALWAYS, "end;"); omniout_str(ALWAYS, "#END USER DEF BLOCK"); omniout_str(ALWAYS, "#######END OF ECHO OF PROBLEM#################"); glob_unchanged_h_cnt := 0; glob_warned := false; glob_warned2 := false; glob_small_float := 0.10*10^(-199); glob_smallish_float := 0.10*10^(-63); glob_large_float := 0.10*10^101; glob_almost_1 := 0.99; glob_log10_abserr := -8.0; glob_log10_relerr := -8.0; glob_hmax := 0.01; Digits := 32; max_terms := 30; glob_max_terms := max_terms; glob_html_log := true; array_pole := Array(1 .. max_terms + 1, []); array_norms := Array(1 .. max_terms + 1, []); array_1st_rel_error := Array(1 .. max_terms + 1, []); array_x1_init := Array(1 .. max_terms + 1, []); array_m1 := Array(1 .. max_terms + 1, []); array_x2 := Array(1 .. max_terms + 1, []); array_x1 := Array(1 .. max_terms + 1, []); array_tmp10 := Array(1 .. max_terms + 1, []); array_tmp11 := Array(1 .. max_terms + 1, []); array_tmp12 := Array(1 .. max_terms + 1, []); array_tmp13 := Array(1 .. max_terms + 1, []); array_tmp14 := Array(1 .. max_terms + 1, []); array_tmp15 := Array(1 .. max_terms + 1, []); array_tmp16 := Array(1 .. max_terms + 1, []); array_tmp17 := Array(1 .. max_terms + 1, []); array_type_pole := Array(1 .. max_terms + 1, []); array_x2_init := Array(1 .. max_terms + 1, []); array_t := Array(1 .. max_terms + 1, []); array_last_rel_error := Array(1 .. max_terms + 1, []); array_tmp0 := Array(1 .. max_terms + 1, []); array_tmp1 := Array(1 .. max_terms + 1, []); array_tmp2 := Array(1 .. max_terms + 1, []); array_tmp3 := Array(1 .. max_terms + 1, []); array_tmp4 := Array(1 .. max_terms + 1, []); array_tmp5 := Array(1 .. max_terms + 1, []); array_tmp6 := Array(1 .. max_terms + 1, []); array_tmp7 := Array(1 .. max_terms + 1, []); array_tmp8 := Array(1 .. max_terms + 1, []); array_tmp9 := Array(1 .. max_terms + 1, []); array_x2_higher_work2 := Array(1 .. 4, 1 .. max_terms + 1, []); array_x1_higher_work := Array(1 .. 3, 1 .. max_terms + 1, []); array_x2_higher_work := Array(1 .. 4, 1 .. max_terms + 1, []); array_poles := Array(1 .. 3, 1 .. 4, []); array_real_pole := Array(1 .. 3, 1 .. 4, []); array_x2_higher := Array(1 .. 4, 1 .. max_terms + 1, []); array_complex_pole := Array(1 .. 3, 1 .. 4, []); array_x1_higher_work2 := Array(1 .. 3, 1 .. max_terms + 1, []); array_x1_higher := Array(1 .. 3, 1 .. max_terms + 1, []); term := 1; while term <= max_terms do array_pole[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_norms[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_1st_rel_error[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_x1_init[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_m1[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_x2[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_x1[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp10[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp11[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp12[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp13[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp14[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp15[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp16[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp17[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_type_pole[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_x2_init[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_t[term] := 0.; term := term + 1 end do ; term := 1; while term <= max_terms do array_last_rel_error[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp0[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp1[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp2[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp3[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp4[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp5[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp6[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp7[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp8[term] := 0.; term := term + 1 end do; term := 1; while term <= max_terms do array_tmp9[term] := 0.; term := term + 1 end do; ord := 1; while ord <= 3 do term := 1; while term <= max_terms do array_x2_higher_work2[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 2 do term := 1; while term <= max_terms do array_x1_higher_work[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 3 do term := 1; while term <= max_terms do array_x2_higher_work[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 2 do term := 1; while term <= 3 do array_poles[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 2 do term := 1; while term <= 3 do array_real_pole[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 3 do term := 1; while term <= max_terms do array_x2_higher[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 2 do term := 1; while term <= 3 do array_complex_pole[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 2 do term := 1; while term <= max_terms do array_x1_higher_work2[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; ord := 1; while ord <= 2 do term := 1; while term <= max_terms do array_x1_higher[ord, term] := 0.; term := term + 1 end do; ord := ord + 1 end do; array_x1 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_x1[term] := 0.; term := term + 1 end do; array_x2 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_x2[term] := 0.; term := term + 1 end do; array_tmp17 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp17[term] := 0.; term := term + 1 end do; array_tmp16 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp16[term] := 0.; term := term + 1 end do; array_tmp15 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp15[term] := 0.; term := term + 1 end do; array_tmp14 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp14[term] := 0.; term := term + 1 end do; array_tmp13 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp13[term] := 0.; term := term + 1 end do; array_tmp12 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp12[term] := 0.; term := term + 1 end do; array_tmp11 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp11[term] := 0.; term := term + 1 end do; array_tmp10 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp10[term] := 0.; term := term + 1 end do; array_t := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_t[term] := 0.; term := term + 1 end do; array_tmp9 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp9[term] := 0.; term := term + 1 end do; array_tmp8 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp8[term] := 0.; term := term + 1 end do; array_tmp7 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp7[term] := 0.; term := term + 1 end do; array_tmp6 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp6[term] := 0.; term := term + 1 end do; array_tmp5 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp5[term] := 0.; term := term + 1 end do; array_tmp4 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp4[term] := 0.; term := term + 1 end do; array_tmp3 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp3[term] := 0.; term := term + 1 end do; array_tmp2 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp2[term] := 0.; term := term + 1 end do; array_tmp1 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp1[term] := 0.; term := term + 1 end do; array_tmp0 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_tmp0[term] := 0.; term := term + 1 end do; array_const_3D0 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_const_3D0[term] := 0.; term := term + 1 end do; array_const_3D0[1] := 3.0; array_const_4D0 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_const_4D0[term] := 0.; term := term + 1 end do; array_const_4D0[1] := 4.0; array_const_0D0 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_const_0D0[term] := 0.; term := term + 1 end do; array_const_0D0[1] := 0.; array_const_1 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_const_1[term] := 0.; term := term + 1 end do; array_const_1[1] := 1; array_const_2 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_const_2[term] := 0.; term := term + 1 end do; array_const_2[1] := 2; array_const_2D0 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms + 1 do array_const_2D0[term] := 0.; term := term + 1 end do; array_const_2D0[1] := 2.0; array_m1 := Array(1 .. max_terms + 2, []); term := 1; while term <= max_terms do array_m1[term] := 0.; term := term + 1 end do; array_m1[1] := -1.0; t_start := 0.5; t_end := 5.0; array_x1_init[1] := exact_soln_x1(t_start); array_x2_init[1] := exact_soln_x2(t_start); array_x2_init[2] := exact_soln_x2p(t_start); glob_h := 0.00001; glob_look_poles := true; glob_max_iter := 10; glob_h := 0.0005; glob_look_poles := true; glob_max_iter := 100; glob_max_minutes := 15; glob_last_good_h := glob_h; glob_max_terms := max_terms; glob_max_sec := convfloat(60.0)*convfloat(glob_max_minutes) + convfloat(3600.0)*convfloat(glob_max_hours); glob_abserr := 10.0^glob_log10_abserr; glob_relerr := 10.0^glob_log10_relerr; chk_data(); if glob_html_log then html_log_file := fopen("html/entry.html", WRITE, TEXT) end if; omniout_str(ALWAYS, "START of Soultion"); array_t[1] := t_start; array_t[2] := glob_h; order_diff := 2; term_no := 1; while term_no <= order_diff do array_x2[term_no] := array_x2_init[term_no]*glob_h^(term_no - 1)/ factorial_1(term_no - 1); term_no := term_no + 1 end do; rows := order_diff; r_order := 1; while r_order <= rows do term_no := 1; while term_no <= rows - r_order + 1 do it := term_no + r_order - 1; array_x2_higher[r_order, term_no] := array_x2_init[it]* glob_h^(term_no - 1)/factorial_1(term_no - 1); term_no := term_no + 1 end do; r_order := r_order + 1 end do; order_diff := 1; term_no := 1; while term_no <= order_diff do array_x1[term_no] := array_x1_init[term_no]*glob_h^(term_no - 1)/ factorial_1(term_no - 1); term_no := term_no + 1 end do; rows := order_diff; r_order := 1; while r_order <= rows do term_no := 1; while term_no <= rows - r_order + 1 do it := term_no + r_order - 1; array_x1_higher[r_order, term_no] := array_x1_init[it]* glob_h^(term_no - 1)/factorial_1(term_no - 1); term_no := term_no + 1 end do; r_order := r_order + 1 end do; current_iter := 1; glob_clock_start_sec := elapsed_time_seconds(); start_array_x2(); if glob_small_float < abs(array_x2_higher[1, 1]) then tmp := abs(array_x2_higher[1, 1]); log10norm := log10(tmp); if log10norm < glob_log10normmin then glob_log10normmin := log10norm end if end if; display_alot(current_iter); start_array_x1(); if glob_small_float < abs(array_x1_higher[1, 1]) then tmp := abs(array_x1_higher[1, 1]); log10norm := log10(tmp); if log10norm < glob_log10normmin then glob_log10normmin := log10norm end if end if; display_alot(current_iter); glob_clock_sec := elapsed_time_seconds(); glob_current_iter := 0; glob_iter := 0; omniout_str(DEBUGL, " "); glob_reached_optimal_h := true; glob_optimal_clock_start_sec := elapsed_time_seconds(); while glob_current_iter < glob_max_iter and array_t[1] <= t_end and convfloat(glob_clock_sec) - convfloat(glob_orig_start_sec) < convfloat(glob_max_sec) do omniout_str(INFO, " "); omniout_str(INFO, "TOP MAIN SOLVE Loop"); glob_iter := glob_iter + 1; glob_clock_sec := elapsed_time_seconds(); glob_current_iter := glob_current_iter + 1; atomall(); if glob_look_poles then check_for_pole() end if; array_t[1] := array_t[1] + glob_h; array_t[2] := glob_h; order_diff := 2; order_diff := 2; order_diff := 2; ord := 3; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do array_x2_higher_work[3, iii] := array_x2_higher[3, iii]/( glob_h^(calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; order_diff := 2; temp_sum := 0.; ord := 3; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_x2_higher_work[ord, iii]; iii := iii - 1 end do; array_x2_higher_work2[ord, calc_term] := temp_sum*glob_h^(calc_term - 1)/convfp(calc_term - 1)!; order_diff := 2; ord := 2; calc_term := 2; iii := glob_max_terms; while calc_term <= iii do array_x2_higher_work[2, iii] := array_x2_higher[2, iii]/( glob_h^(calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; order_diff := 2; temp_sum := 0.; ord := 2; calc_term := 2; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_x2_higher_work[ord, iii]; iii := iii - 1 end do; array_x2_higher_work2[ord, calc_term] := temp_sum*glob_h^(calc_term - 1)/convfp(calc_term - 1)!; order_diff := 2; ord := 2; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do array_x2_higher_work[2, iii] := array_x2_higher[2, iii]/( glob_h^(calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; order_diff := 2; temp_sum := 0.; ord := 2; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_x2_higher_work[ord, iii]; iii := iii - 1 end do; array_x2_higher_work2[ord, calc_term] := temp_sum*glob_h^(calc_term - 1)/convfp(calc_term - 1)!; order_diff := 2; ord := 1; calc_term := 3; iii := glob_max_terms; while calc_term <= iii do array_x2_higher_work[1, iii] := array_x2_higher[1, iii]/( glob_h^(calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; order_diff := 2; temp_sum := 0.; ord := 1; calc_term := 3; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_x2_higher_work[ord, iii]; iii := iii - 1 end do; array_x2_higher_work2[ord, calc_term] := temp_sum*glob_h^(calc_term - 1)/convfp(calc_term - 1)!; order_diff := 2; ord := 1; calc_term := 2; iii := glob_max_terms; while calc_term <= iii do array_x2_higher_work[1, iii] := array_x2_higher[1, iii]/( glob_h^(calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; order_diff := 2; temp_sum := 0.; ord := 1; calc_term := 2; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_x2_higher_work[ord, iii]; iii := iii - 1 end do; array_x2_higher_work2[ord, calc_term] := temp_sum*glob_h^(calc_term - 1)/convfp(calc_term - 1)!; order_diff := 2; ord := 1; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do array_x2_higher_work[1, iii] := array_x2_higher[1, iii]/( glob_h^(calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; order_diff := 2; temp_sum := 0.; ord := 1; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_x2_higher_work[ord, iii]; iii := iii - 1 end do; array_x2_higher_work2[ord, calc_term] := temp_sum*glob_h^(calc_term - 1)/convfp(calc_term - 1)!; term_no := glob_max_terms; while 1 <= term_no do array_x2[term_no] := array_x2_higher_work2[1, term_no]; ord := 1; while ord <= order_diff do array_x2_higher[ord, term_no] := array_x2_higher_work2[ord, term_no]; ord := ord + 1 end do; term_no := term_no - 1 end do; order_diff := 1; order_diff := 1; order_diff := 1; ord := 2; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do array_x1_higher_work[2, iii] := array_x1_higher[2, iii]/( glob_h^(calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; order_diff := 1; temp_sum := 0.; ord := 2; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_x1_higher_work[ord, iii]; iii := iii - 1 end do; array_x1_higher_work2[ord, calc_term] := temp_sum*glob_h^(calc_term - 1)/convfp(calc_term - 1)!; order_diff := 1; ord := 1; calc_term := 2; iii := glob_max_terms; while calc_term <= iii do array_x1_higher_work[1, iii] := array_x1_higher[1, iii]/( glob_h^(calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; order_diff := 1; temp_sum := 0.; ord := 1; calc_term := 2; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_x1_higher_work[ord, iii]; iii := iii - 1 end do; array_x1_higher_work2[ord, calc_term] := temp_sum*glob_h^(calc_term - 1)/convfp(calc_term - 1)!; order_diff := 1; ord := 1; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do array_x1_higher_work[1, iii] := array_x1_higher[1, iii]/( glob_h^(calc_term - 1)* factorial_3(iii - calc_term, iii - 1)); iii := iii - 1 end do; order_diff := 1; temp_sum := 0.; ord := 1; calc_term := 1; iii := glob_max_terms; while calc_term <= iii do temp_sum := temp_sum + array_x1_higher_work[ord, iii]; iii := iii - 1 end do; array_x1_higher_work2[ord, calc_term] := temp_sum*glob_h^(calc_term - 1)/convfp(calc_term - 1)!; term_no := glob_max_terms; while 1 <= term_no do array_x1[term_no] := array_x1_higher_work2[1, term_no]; ord := 1; while ord <= order_diff do array_x1_higher[ord, term_no] := array_x1_higher_work2[ord, term_no]; ord := ord + 1 end do; term_no := term_no - 1 end do; display_alot(current_iter) end do; omniout_str(ALWAYS, "Finished!"); if glob_max_iter <= glob_iter then omniout_str(ALWAYS, "Maximum Iterations Reached before Solution Completed!") end if; if convfloat(glob_max_sec) <= elapsed_time_seconds() - convfloat(glob_orig_start_sec) then omniout_str(ALWAYS, "Maximum Time Reached before Solution Completed!") end if; glob_clock_sec := elapsed_time_seconds(); omniout_str(INFO, "diff (x2,t,2) = 3.0 * diff(x2,t,1) - 2.0 * x2 - di\ ff(x1,t,2) - diff (x1,t,1) + x1;"); omniout_str(INFO, "diff (x1,t,1) = 4.0 * x2 - 2.0 * diff (x2,t ,1) - 2.0 * x1;"); omniout_int(INFO, "Iterations ", 32, glob_iter, 4, " "); prog_report(t_start, t_end); if glob_html_log then logstart(html_log_file); logitem_str(html_log_file, "2012-06-02T01:56:50-05:00"); logitem_str(html_log_file, "Maple"); logitem_str(html_log_file, "complicatedrev"); logitem_str(html_log_file, "diff (x2,t,2) = 3.0 * diff(x2,t,1) - \ 2.0 * x2 - diff(x1,t,2) - diff (x1,t,1) + x1;"); logitem_float(html_log_file, t_start); logitem_float(html_log_file, t_end); logitem_float(html_log_file, array_t[1]); logitem_float(html_log_file, glob_h); logitem_integer(html_log_file, Digits); logitem_integer(html_log_file, glob_max_terms); logitem_float(html_log_file, array_1st_rel_error[1]); logitem_float(html_log_file, array_last_rel_error[1]); logitem_integer(html_log_file, glob_iter); logitem_pole(html_log_file, array_type_pole[1]); if array_type_pole[1] = 1 or array_type_pole[1] = 2 then logitem_float(html_log_file, array_pole[1]); logitem_float(html_log_file, array_pole[2]); 0 else logitem_str(html_log_file, "NA"); logitem_str(html_log_file, "NA"); 0 end if; logitem_time(html_log_file, convfloat(glob_clock_sec)); if glob_percent_done < 100.0 then logitem_time(html_log_file, convfloat(glob_optimal_expect_sec)) ; 0 else logitem_str(html_log_file, "Done"); 0 end if; log_revs(html_log_file, " 076 "); logitem_str(html_log_file, "complicatedrev diffeq.mxt"); logitem_str(html_log_file, "complicatedrev maple results"); logitem_str(html_log_file, "sub iter once eqs reversed"); logend(html_log_file); logditto(html_log_file); logditto(html_log_file); logditto(html_log_file); logitem_str(html_log_file, "diff (x1,t,1) = 4.0 * x2 - 2.0 * diff (x2,t ,1) - 2.0 * x1;") ; logditto(html_log_file); logditto(html_log_file); logditto(html_log_file); logditto(html_log_file); logditto(html_log_file); logditto(html_log_file); logitem_float(html_log_file, array_1st_rel_error[2]); logitem_float(html_log_file, array_last_rel_error[2]); logditto(html_log_file); logitem_pole(html_log_file, array_type_pole[2]); if array_type_pole[2] = 1 or array_type_pole[2] = 2 then logitem_float(html_log_file, array_pole[1]); logitem_float(html_log_file, array_pole[2]); 0 else logitem_str(html_log_file, "NA"); logitem_str(html_log_file, "NA"); 0 end if; logditto(html_log_file); if glob_percent_done < 100.0 then logditto(html_log_file); 0 else logditto(html_log_file); 0 end if; logditto(html_log_file); logditto(html_log_file); logditto(html_log_file); logditto(html_log_file); logend(html_log_file) end if; if glob_html_log then fclose(html_log_file) end if end proc > mainprog(); ##############ECHO OF PROBLEM################# ##############temp/complicatedrevpostode.ode################# diff (x2,t,2) = 3.0 * diff(x2,t,1) - 2.0 * x2 - diff(x1,t,2) - diff (x1,t,1) + x1; diff (x1,t,1) = 4.0 * x2 - 2.0 * diff (x2,t ,1) - 2.0 * x1; ! #BEGIN FIRST INPUT BLOCK Digits := 32; max_terms := 30; #END FIRST INPUT BLOCK ! #BEGIN SECOND INPUT BLOCK t_start := 0.5; t_end := 5.0; array_x1_init[1] := exact_soln_x1(t_start); array_x2_init[1] := exact_soln_x2(t_start); array_x2_init[2] := exact_soln_x2p(t_start); glob_h := 0.00001 ; glob_look_poles := true; glob_max_iter := 10; #END SECOND INPUT BLOCK #BEGIN OVERRIDE BLOCK glob_h := 0.0005 ; glob_look_poles := true; glob_max_iter := 100; glob_max_minutes := 15; #END OVERRIDE BLOCK ! #BEGIN USER DEF BLOCK exact_soln_x1 := proc(t) local c1,c2,c3; c1 := 0.0001; c2 := 0.0002; c3 := 0.0003; 2.0 * c1 + 6.0 * c3 * exp(-t); end; exact_soln_x2 := proc(t) local c1,c2,c3; c1 := 0.0001; c2 := 0.0002; c3 := 0.0003; c1 + c2 * exp(2.0 * t) + c3 * exp(-t); end; exact_soln_x2p := proc(t) local c1,c2,c3; c1 := 0.0001; c2 := 0.0002; c3 := 0.0003; 2.0 * c2 * exp(2.0 * t) - c3 * exp(-t); end; #END USER DEF BLOCK #######END OF ECHO OF PROBLEM################# START of Soultion t[1] = 0.5 x2[1] (analytic) = 0.00082561556360559907415319735476789 x2[1] (numeric) = 0.00082561556360559907415319735476789 absolute error = 0 relative error = 0 % h = 0.0005 x1[1] (analytic) = 0.0012917551874827401624868391629841 x1[1] (numeric) = 0.0012917551874827401624868391629841 absolute error = 0 relative error = 0 % h = 0.0005 t[1] = 0.5 x2[1] (analytic) = 0.00082561556360559907415319735476789 x2[1] (numeric) = 0.00082561556360559907415319735476789 absolute error = 0 relative error = 0 % h = 0.0005 x1[1] (analytic) = 0.0012917551874827401624868391629841 x1[1] (numeric) = 0.0012917551874827401624868391629841 absolute error = 0 relative error = 0 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5005 x2[1] (analytic) = 0.00082606853503225828165826201261726 x2[1] (numeric) = 0.00082606853503224742496199848942521 absolute error = 1.085669626352319205e-17 relative error = 1.3142609605750489028871098278662e-12 % h = 0.0005 x1[1] (analytic) = 0.0012912094463356551708370721480129 x1[1] (numeric) = 0.0012912094463935537320044961503858 absolute error = 5.78985611674240023729e-14 relative error = 4.4840565046774785484100279208153e-09 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.501 x2[1] (analytic) = 0.00082652209612631802672115172787186 x2[1] (numeric) = 0.00082652236917871181444490180802587 absolute error = 2.7305239378772375008015401e-10 relative error = 3.3036309019135156481730720087571e-05 % h = 0.0005 x1[1] (analytic) = 0.0012906639779909374464836782020351 x1[1] (numeric) = 0.0012906634326152478944466622182676 absolute error = 5.453756895520370159837675e-10 relative error = 4.2255435872702913342893826412353e-05 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5015 x2[1] (analytic) = 0.00082697624740952299139053885956424 x2[1] (numeric) = 0.00082697734009682215098165840053891 absolute error = 1.09268729915959111954097467e-09 relative error = 0.00013213043332047318361124483248855 % h = 0.0005 x1[1] (analytic) = 0.0012901187823122199004062452509559 x1[1] (numeric) = 0.0012901166009833348385789830242253 absolute error = 2.1813288850618272622267306e-09 relative error = 0.00016907969366606173562826001003325 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.502 x2[1] (analytic) = 0.0008274309894041739636559251804687 x2[1] (numeric) = 0.00082743344958282581125025435437209 absolute error = 2.46017865184759432917390339e-09 relative error = 0.00029732735217219119465035490510573 % h = 0.0005 x1[1] (analytic) = 0.0012895738591632036100858259251 x1[1] (numeric) = 0.0012895689511201653583496595701363 absolute error = 4.9080430382517361663549637e-09 relative error = 0.00038059417871858340196935826475707 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5025 x2[1] (analytic) = 0.00082788632263312837678584048126422 x2[1] (numeric) = 0.00082789069979867778436229143634121 absolute error = 4.37716554940757645095507699e-09 relative error = 0.00052871577047991461749320260068501 % h = 0.0005 x1[1] (analytic) = 0.0012890292084076577854302062195851 x1[1] (numeric) = 0.0012890204818007836603861417926064 absolute error = 8.7266068741250440644269787e-09 relative error = 0.00067699062342466634638148842944759 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE memory used=3.8MB, alloc=2.9MB, time=0.17 t[1] = 0.503 x2[1] (analytic) = 0.0008283422476198008492141699458837 x2[1] (numeric) = 0.00082834909290945412296271212375481 absolute error = 6.84528965327374854217787111e-09 relative error = 0.00082638422378471444851807544967438 % h = 0.0005 x1[1] (analytic) = 0.0012884848299094197347162072617323 x1[1] (numeric) = 0.0012884711917996072253248320174261 absolute error = 1.36381098125093913752443062e-08 relative error = 0.0010584610308115267592928474238963 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5035 x2[1] (analytic) = 0.00082879876488816372497515444163463 x2[1] (numeric) = 0.00082880863108406243138106858035202 absolute error = 9.86619589870640591413871739e-09 relative error = 0.0011904211633372461167123633345959 % h = 0.0005 x1[1] (analytic) = 0.0012879407235323948305490116710912 x1[1] (numeric) = 0.0012879210798788657026601865303412 absolute error = 1.96436535291278888251407500e-08 relative error = 0.0015251985724352168395476949506296 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.504 x2[1] (analytic) = 0.00082925587496274761468760841422102 x2[1] (numeric) = 0.00082926931650288987642419140960385 absolute error = 1.344154014226173658299538283e-08 relative error = 0.001620915877486616107635828350292 % h = 0.0005 x1[1] (analytic) = 0.0012873968891405564758385060019091 x1[1] (numeric) = 0.0012873701442357470932520860842079 absolute error = 2.67449048093825864199177012e-08 relative error = 0.0020774405340715880211814027101181 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5045 x2[1] (analytic) = 0.00082971357836864193708890062488759 x2[1] (numeric) = 0.00082973115172195334224393791823925 absolute error = 1.757335331140515503729335166e-08 relative error = 0.0021180023769114828258792099997486 % h = 0.0005 x1[1] (analytic) = 0.0012868533265979460697926307621308 x1[1] (numeric) = 0.0012868183580214711297558639388787 absolute error = 3.49685764749400367668232521e-08 relative error = 0.0027173707952705423473265584406399 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.505 x2[1] (analytic) = 0.00083017187563149546111924351454314 x2[1] (numeric) = 0.00083019415409082010534473021335569 absolute error = 2.227845932464422548669881255e-08 relative error = 0.0026835960092839134659065324529361 % h = 0.0005 x1[1] (analytic) = 0.0012863100357686729739277295072664 x1[1] (numeric) = 0.0012862647734715930959051797356496 absolute error = 4.52622970798780225497716168e-08 relative error = 0.0035187704224689645134961646917096 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5055 x2[1] (analytic) = 0.0008306307672775168485568375279051 x2[1] (numeric) = 0.00083065883404279133487294603728788 absolute error = 2.806676527448631610850938278e-08 relative error = 0.0033789701008160590770708665278057 % h = 0.0005 x1[1] (analytic) = 0.0012857670165169144780958885117126 x1[1] (numeric) = 0.0012856802253246789123874176564892 absolute error = 8.67911922355657084708552234e-08 relative error = 0.0067501492199324865757753674433221 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.506 x2[1] (analytic) = 0.00083109025383347519720441727943742 x2[1] (numeric) = 0.00083113955772287099796816254638673 absolute error = 4.930388939580076374526694931e-08 relative error = 0.0059324350355911813507153967462484 % h = 0.0005 x1[1] (analytic) = 0.0012852242687069157665292585243653 x1[1] (numeric) = 0.0012843118564716136515708230847805 absolute error = 9.124122353021149584354395848e-07 relative error = 0.070992453030793386397126660243853 % h = 0.0005 TOP MAIN SOLVE Loop Complex estimate of poles used NO POLE Radius of convergence = 9.530e-05 Order of pole = 1.449 t[1] = 0.5065 x2[1] (analytic) = 0.00083155033582670058462774699213345 x2[1] (numeric) = 0.00083197980390481376775896271051958 absolute error = 4.2946807811318313121571838613e-07 relative error = 0.05164667243940437931738490652117 % h = 0.0005 x1[1] (analytic) = 0.0012846817922029898839013501196003 x1[1] (numeric) = 0.0012658437812136743417134037384354 absolute error = 1.88380109893155421879463811649e-05 relative error = 1.4663561905872320060945565752337 % h = 0.0005 TOP MAIN SOLVE Loop Real estimate of pole used Real estimate of pole used Radius of convergence = 6.634e-05 Order of pole = 0.2418 t[1] = 0.507 x2[1] (analytic) = 0.00083201101378508461244661319002326 x2[1] (numeric) = 0.00084013527057244651425070136660822 absolute error = 8.12425678736190180408817658496e-06 relative error = 0.97646024544820089664076605955721 % h = 0.0005 x1[1] (analytic) = 0.001284139586869517701405294158948 x1[1] (numeric) = 0.00093355058176335250083126022437346 absolute error = 0.00035058900510616520057403393457454 relative error = 27.301471638362379082855177401818 % h = 0.0005 TOP MAIN SOLVE Loop Real estimate of pole used Real estimate of pole used Radius of convergence = 9.349e-05 Order of pole = 16.66 t[1] = 0.5075 x2[1] (analytic) = 0.0008324722882370809511788631756612 x2[1] (numeric) = 0.00097475760317722587637684481428627 absolute error = 0.00014228531494014492519798163862507 relative error = 17.091898066836705402330876169302 % h = 0.0005 x1[1] (analytic) = 0.0012835976525709478828490588830272 x1[1] (numeric) = -0.0042276610732294209380803045973744 absolute error = 0.0055112587258003688209293634804016 relative error = 429.36029952701606227194060742438 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE Real estimate of pole used Radius of convergence = 0.0003879 Order of pole = 181.2 memory used=7.6MB, alloc=4.1MB, time=0.39 t[1] = 0.508 x2[1] (analytic) = 0.00083293415971170588563803837477598 x2[1] (numeric) = 0.0029566903130173775546846623927067 absolute error = 0.0021237561533056716690466240179307 relative error = 254.97287253061435897550558091988 % h = 0.0005 x1[1] (analytic) = 0.0012830559891717968507676151575396 x1[1] (numeric) = -0.071374234931290285040166639204913 absolute error = 0.072657290920462081890934254362453 relative error = 5662.8308923106173781827827324822 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5085 x2[1] (analytic) = 0.00083339662873853886088515218174166 x2[1] (numeric) = 0.027621181241322226621429206001557 absolute error = 0.026787784612583687760544053819815 relative error = 3214.2900137633994491456764385321 % h = 0.0005 x1[1] (analytic) = 0.0012825145965366487525520414013697 x1[1] (numeric) = -0.79702669041798808828315607415594 absolute error = 0.79830920501452473703570811555731 relative error = 62245.623337957268431299637299511 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.509 x2[1] (analytic) = 0.00083385969584772302873516249155556 x2[1] (numeric) = 0.28466194804950946216278059736196 absolute error = 0.2838280883536617391340454348704 relative error = 34037.871091144999807578029232469 % h = 0.0005 x1[1] (analytic) = 0.001281973474530155426595559729063 x1[1] (numeric) = -7.2459369524189325475208406915529 absolute error = 7.247218925893462702947436251282 relative error = 565317.38525631942268432085639633 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5095 x2[1] (analytic) = 0.00083432336156996579481868965658664 x2[1] (numeric) = 2.507444069364568119087605206231 absolute error = 2.5066097460029981532927865165744 relative error = 300436.24108598037252653217188423 % h = 0.0005 x1[1] (analytic) = 0.0012814326230170363684564948441937 x1[1] (numeric) = -53.733973836266335335003169781186 absolute error = 53.73525526888935237137162627603 relative error = 4193373.4402963575730134931141483 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.51 x2[1] (analytic) = 0.00083478762643653936619953115948893 x2[1] (numeric) = 18.27074090657420878808778293205 absolute error = 18.269906118947772248721583400891 relative error = 2188569.3487020859943916190936106 % h = 0.0005 x1[1] (analytic) = 0.0012808920418620786970381472243591 x1[1] (numeric) = -320.67277136910907078824477319266 absolute error = 320.67405226115093286694181133988 relative error = 25035213.100002991897247058694234 % h = 0.0005 TOP MAIN SOLVE Loop Real estimate of pole used NO POLE Radius of convergence = 2.208e-05 Order of pole = 14.46 t[1] = 0.5105 x2[1] (analytic) = 0.0008352524909792812995485248473563 x2[1] (numeric) = 108.61305294121703039677614533979 absolute error = 108.61221768872605111547659681494 relative error = 13003519.158785748691426003505358 % h = 0.0005 x1[1] (analytic) = 0.0012803517309301371207855721427719 x1[1] (numeric) = -1514.0299104036562587049614188136 absolute error = 1514.0311907553871888420822043857 relative error = 118251192.55749269390944759295313 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE Real estimate of pole used Radius of convergence = 2.335e-05 Order of pole = 24.79 t[1] = 0.511 x2[1] (analytic) = 0.00083571795573059504987431312643056 x2[1] (numeric) = 520.08173023407345765104498267367 absolute error = 520.08089451611772705599510836054 relative error = 62231628.61942538124675171337096 % h = 0.0005 x1[1] (analytic) = 0.0012798116900861339038992560756415 x1[1] (numeric) = -5564.5576686600806375497679803704 absolute error = 5564.5589484717707236836718796265 relative error = 434795133.65730115350803289628017 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE Real estimate of pole used Radius of convergence = 1.143e-05 Order of pole = 2.49 t[1] = 0.5115 x2[1] (analytic) = 0.00083618402122345051981156107146395 x2[1] (numeric) = 1986.7401856547279619557898365553 absolute error = 1986.7393494707067385052700249942 relative error = 237595947.66757655590154665218889 % h = 0.0005 x1[1] (analytic) = 0.0012792719191950588325656820487663 x1[1] (numeric) = -15854.572114661031284015226293769 absolute error = 15854.573393932950479074058859451 relative error = 1239343501.2556936703967511807255 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.512 x2[1] (analytic) = 0.00083665068799138460946718195917937 x2[1] (numeric) = 6066.8819353490434257257619949977 absolute error = 6066.8810986983554343411525278157 relative error = 725139079.63951007926000519258442 % h = 0.0005 x1[1] (analytic) = 0.0012787324181219691812047754809758 x1[1] (numeric) = -36141.26332918667971989612347285 absolute error = 36141.264607919097841865304677625 relative error = 2826335212.5692210240807686484216 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5125 x2[1] (analytic) = 0.00083711795656850176682512429116968 x2[1] (numeric) = 15211.749749532517811688220600317 absolute error = 15211.748912414561243186453775193 relative error = 1817157163.2234813350810091446767 % h = 0.0005 x1[1] (analytic) = 0.0012781931867319896787342220862856 x1[1] (numeric) = -70878.931477801531185228322335724 absolute error = 70878.932755994717917218001069946 relative error = 5545244137.7202039918003127370626 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE memory used=11.4MB, alloc=4.2MB, time=0.60 t[1] = 0.513 x2[1] (analytic) = 0.00083758582748947453871027492802935 x2[1] (numeric) = 32878.494537382227616276283221484 absolute error = 32878.493699796400126801744511209 relative error = 3925388016.4548946266578527182076 % h = 0.0005 x1[1] (analytic) = 0.0012776542248903124748506494008434 x1[1] (numeric) = -121734.33181775279400100454885853 absolute error = 121734.33309540701889131702370918 relative error = 9527956056.0180512130722142053005 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5135 x2[1] (analytic) = 0.00083805430128954412231203351352064 x2[1] (numeric) = 62646.368155082935618395803327158 absolute error = 62646.367317028634328851681015124 relative error = 7475215773.0868308529493157394242 % h = 0.0005 x1[1] (analytic) = 0.0012771155324621971063276635049614 x1[1] (numeric) = -170552.50267641655104864202947114 absolute error = 170552.5039535320835108391357988 relative error = 13354508626.538881611119441462666 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.514 x2[1] (analytic) = 0.0008385233785045209172681139251402 x2[1] (numeric) = 103632.4288076381813242923338462 absolute error = 103632.42796911480281977141657809 relative error = 12358919336.744057911955317472261 % h = 0.0005 x1[1] (analytic) = 0.0012765771093129704633307325147448 x1[1] (numeric) = -221043.54767545165413993251032604 absolute error = 221043.54895202876345290297365677 relative error = 17315330765.329968996757319837959 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5145 x2[1] (analytic) = 0.00083899305967078507830912904557372 x2[1] (numeric) = 155882.86857296402478674987397618 absolute error = 155882.86773397096511596479566705 relative error = 18579756523.270680690064927943434 % h = 0.0005 x1[1] (analytic) = 0.0012760389553080267557489084220364 x1[1] (numeric) = -273093.6398686089111403696813386 absolute error = 273093.64114464786644839643708751 relative error = 21401669597.048077416453854448591 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.515 x2[1] (analytic) = 0.00083946334532528706846451570820467 x2[1] (numeric) = 219419.15300196709731907392054994 absolute error = 219419.15216250375199378685208542 relative error = 26138026559.989957827440222299193 % h = 0.0005 x1[1] (analytic) = 0.0012755010703128274795433788656077 x1[1] (numeric) = -326667.77722832612697822616703437 absolute error = 326667.77850382719729105364657775 relative error = 25610937231.41362381315647120084 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5155 x2[1] (analytic) = 0.00083993423600554821283035722907962 x2[1] (numeric) = 294256.15650626590575749397040438 absolute error = 294256.15566633166975194575757402 relative error = 35033237490.796595077068850650458 % h = 0.0005 x1[1] (analytic) = 0.0012749634541929013831128404207343 x1[1] (numeric) = -381527.82940737843268095211526624 absolute error = 381527.83068234188687385349837908 relative error = 29924609166.453558746528020607702 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.516 x2[1] (analytic) = 0.00084040573224966125289966149752755 x2[1] (numeric) = 380334.76495253083110035764661038 absolute error = 380334.76411212509885069639371072 relative error = 45256088757.749950787426925082548 % h = 0.0005 x1[1] (analytic) = 0.0012744261068138444336756849984992 x1[1] (numeric) = -435372.00163342176086801493735391 absolute error = 435372.00290784786768185937102959 relative error = 34162200584.254250972302650744714 % h = 0.0005 TOP MAIN SOLVE Loop Real estimate of pole used NO POLE Radius of convergence = 5.891e-05 Order of pole = 8.19 t[1] = 0.5165 x2[1] (analytic) = 0.0008408778345962909014556531579845 x2[1] (numeric) = 476858.18875518894526947777528691 absolute error = 476858.18791431111067318687383126 relative error = 56709568060.294132580839540796926 % h = 0.0005 x1[1] (analytic) = 0.0012738890280413197836689909503695 x1[1] (numeric) = -467234.53771816475593234179387544 absolute error = 467234.53899205378397366157754443 relative error = 36677805421.595843599567037072201 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE Real estimate of pole used Radius of convergence = 5.179e-05 Order of pole = 9.925 t[1] = 0.517 x2[1] (analytic) = 0.0008413505435846743980286389764889 x2[1] (numeric) = 576469.94368900974950143230045822 absolute error = 576469.94284765920591675790242958 relative error = 68517212860.116571420679540453523 % h = 0.0005 x1[1] (analytic) = 0.0012733522177410577371643104777951 x1[1] (numeric) = -306997.17257629496376740269706476 absolute error = 306997.17384964718150846043422907 relative error = 24109368136.513233364983584771228 % h = 0.0005 TOP MAIN SOLVE Loop Complex estimate of poles used Complex estimate of poles used Radius of convergence = 5.833e-05 Order of pole = 3.058 t[1] = 0.5175 x2[1] (analytic) = 0.00084182385975462206491700604678574 x2[1] (numeric) = 620067.80837159484771196542070457 absolute error = 620067.80752977098795734335578756 relative error = 73657666071.67806433929706136264 % h = 0.0005 x1[1] (analytic) = 0.0012728156757788557163002449507755 x1[1] (numeric) = 1261994.6473790096816609829587652 absolute error = 1261994.646106194005882127242465 relative error = 99149835292.055139563525419337414 % h = 0.0005 TOP MAIN SOLVE Loop Complex estimate of poles used NO POLE Radius of convergence = 0.0002122 Order of pole = 220.4 memory used=15.2MB, alloc=4.3MB, time=0.82 t[1] = 0.518 x2[1] (analytic) = 0.00084229778364651786377291305301299 x2[1] (numeric) = 188284.92344411469103950882168391 absolute error = 188284.922601816907392990957911 relative error = 22353724093.477293161787959783597 % h = 0.0005 x1[1] (analytic) = 0.0012722794020205782277317997435378 x1[1] (numeric) = 11878872.85536794496150553458646 absolute error = 11878872.854095665559484956358728 relative error = 933668566450.90392775379219179893 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5185 x2[1] (analytic) = 0.00084277231580131995275323536853887 x2[1] (numeric) = -3347530.2662970999244732668515231 absolute error = 3347530.2671398722402745868042763 relative error = 397204583536.53829494220070911194 % h = 0.0005 x1[1] (analytic) = 0.0012717433963321568290965101996664 x1[1] (numeric) = 73857883.680816429683939586531192 absolute error = 73857883.679544686287607429702095 relative error = 5807608979339.5959931140721636703 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.519 x2[1] (analytic) = 0.00084324745676056124423632533367627 x2[1] (numeric) = -24644953.788113455395681978809988 absolute error = 24644953.788956702852442540054224 relative error = 2922624146846.9199006788723729987 % h = 0.0005 x1[1] (analytic) = 0.0012712076585795900954973303432135 x1[1] (numeric) = 399647354.74102577365802095393804 absolute error = 399647354.73975456599944136384254 relative error = 31438400488108.191571921912348935 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5195 x2[1] (analytic) = 0.00084372320706634996310514961872029 x2[1] (numeric) = -138417628.69509355196896110428911 absolute error = 138417628.69593727517602745425222 relative error = 16405573242108.55603296213816145 % h = 0.0005 x1[1] (analytic) = 0.001270672188628943586002275956513 x1[1] (numeric) = 2023833770.226769303288659067818 absolute error = 2023833770.225498631100030124232 relative error = 159272689552544.39439308677768454 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.52 x2[1] (analytic) = 0.00084419956726137020559736614303792 x2[1] (numeric) = -714538675.17055883365270177417509 absolute error = 714538675.17140303321996314438069 relative error = 84640966766828.105274532339936869 % h = 0.0005 x1[1] (analytic) = 0.00127013698634634981016081364961 x1[1] (numeric) = 10294794729.232272591356107920747 absolute error = 10294794729.231002454369761570937 relative error = 810526332190734.74343528375714892 % h = 0.0005 TOP MAIN SOLVE Loop Real estimate of pole used NO POLE Radius of convergence = 8.940e-05 Order of pole = 48.06 t[1] = 0.5205 x2[1] (analytic) = 0.00084467653788888249872290358578525 x2[1] (numeric) = -3669290420.36856066090184157666 absolute error = 3669290420.3694053374397304591587 relative error = 434401839731471.48160176299358999 % h = 0.0005 x1[1] (analytic) = 0.0012696020515980081945369875504003 x1[1] (numeric) = 55076245329.58287825691947904998 absolute error = 55076245329.581608654867881041785 relative error = 4338071544564603.5218553916967252 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE Real estimate of pole used Radius of convergence = 0.0001756 Order of pole = 150.1 t[1] = 0.521 x2[1] (analytic) = 0.00084515411949272436024960708923766 x2[1] (numeric) = -19537669223.346100813204834136139 absolute error = 19537669223.346945967324326860499 relative error = 2311728567929572.638133937372319 % h = 0.0005 x1[1] (analytic) = 0.0012690673842501850492592752487639 x1[1] (numeric) = 300833239754.18482972996587592729 absolute error = 300833239754.18356066258162574224 relative error = 23705064324218502.947995760702528 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5215 x2[1] (analytic) = 0.0008456323126173108592575143216941 x2[1] (numeric) = -105403371939.89467105397520881226 absolute error = 105403371939.89551668628782612312 relative error = 12464444696260748.611285672794685 % h = 0.0005 x1[1] (analytic) = 0.0012685329841692135345871646321545 x1[1] (numeric) = 1552077303866.2771059734752098387 absolute error = 1552077303866.2758374404910406252 relative error = 122352144030591438.6758388546332 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.522 x2[1] (analytic) = 0.00084611111780763517726232663345645 x2[1] (numeric) = -539909657956.70839967033883755136 absolute error = 539909657956.70924578145664518654 relative error = 63810727290249203.20465103361347 % h = 0.0005 x1[1] (analytic) = 0.0012679988512214936274944432542899 x1[1] (numeric) = 7085923949862.3696601146614305768 absolute error = 7085923949862.3683921158102090832 relative error = 558827316210604476.17165068141325 % h = 0.0005 TOP MAIN SOLVE Loop Real estimate of pole used NO POLE Radius of convergence = 2.933e-05 Order of pole = 22.77 t[1] = 0.5225 x2[1] (analytic) = 0.00084659053560926916990864060649109 x2[1] (numeric) = -2479016948111.2995284789681549156 absolute error = 2479016948111.3003750695037641848 relative error = 292823607616545867.90857989501126 % h = 0.0005 x1[1] (analytic) = 0.0012674649852734920882691918827657 x1[1] (numeric) = 27637356319596.592213740971466365 absolute error = 27637356319596.590946275986192873 relative error = 2180522274043967774.2906852551271 % h = 0.0005 TOP MAIN SOLVE Loop Real estimate of pole used Real estimate of pole used Radius of convergence = 1.641e-05 Order of pole = 5.849 memory used=19.0MB, alloc=4.3MB, time=1.05 t[1] = 0.523 x2[1] (analytic) = 0.00084707056656836392923350586605222 x2[1] (numeric) = -9876927113559.9329291230856873854 absolute error = 9876927113559.9337761936522557493 relative error = 1166009952815755587.6066500023345 % h = 0.0005 x1[1] (analytic) = 0.0012669313861917424271304738755899 x1[1] (numeric) = 90912034949970.810295004385933822 absolute error = 90912034949970.80902807299974208 relative error = 7175766260179445947.9588024969319 % h = 0.0005 TOP MAIN SOLVE Loop Real estimate of pole used Real estimate of pole used Radius of convergence = 1.753e-05 Order of pole = 14.09 t[1] = 0.5235 x2[1] (analytic) = 0.00084755121123165034650087559078626 x2[1] (numeric) = -33736028236628.631002810566059793 absolute error = 33736028236628.631850361777291443 relative error = 3980411778021516410.1055448275556 % h = 0.0005 x1[1] (analytic) = 0.0012663980538428448708617120408105 x1[1] (numeric) = 252817726183951.98016365082859896 absolute error = 252817726183951.97889725277475612 relative error = 19963527693112333748.415673260533 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE Real estimate of pole used Radius of convergence = 2.648e-05 Order of pole = 43.09 t[1] = 0.524 x2[1] (analytic) = 0.00084803247014643967560751672664236 x2[1] (numeric) = -98968383520029.418529647296942646 absolute error = 98968383520029.419377679767089086 relative error = 11670353082463858038.533343463937 % h = 0.0005 x1[1] (analytic) = 0.0012658649880934663294607446375807 x1[1] (numeric) = 602836385208340.2733569129272233 absolute error = 602836385208340.27209104793912983 relative error = 47622486669473259955.836527631358 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE Real estimate of pole used Radius of convergence = 9.320e-06 Order of pole = 1.999 t[1] = 0.5245 x2[1] (analytic) = 0.00084851434386062409706094747929037 x2[1] (numeric) = -252257466810436.31693075351611337 absolute error = 252257466810436.31777926785997399 relative error = 29729310840250428718.789521947627 % h = 0.0005 x1[1] (analytic) = 0.0012653321888103403628065521811756 x1[1] (numeric) = 1257065426902727.9617955410585566 absolute error = 1257065426902727.9605302088697463 relative error = 99346672598648993931.866929669829 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.525 x2[1] (analytic) = 0.00084899683292267728252997022968994 x2[1] (numeric) = -567682466997653.49630835881567671 absolute error = 567682466997653.49715735564859939 relative error = 66865086533173840367.375384656374 % h = 0.0005 x1[1] (analytic) = 0.0012647996558602671473426467186411 x1[1] (numeric) = 2325313226126924.932296195330972 absolute error = 2325313226126924.9310313956751117 relative error = 183848344309149738343.84751172721 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5255 x2[1] (analytic) = 0.00084947993788165495996836858796728 x2[1] (numeric) = -1143608882669246.2465899976255879 absolute error = 1143608882669246.2474394775634696 relative error = 134624589901564899847.0996455185 % h = 0.0005 x1[1] (analytic) = 0.0012642673891101134427771152459227 x1[1] (numeric) = 3842454069120740.3537794256811757 absolute error = 3842454069120740.3525151582920656 relative error = 303927325992751325354.64881396242 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.526 x2[1] (analytic) = 0.00084996365928719547931233787183942 x2[1] (numeric) = -2083195019788801.6805069534403201 absolute error = 2083195019788801.6813569170996073 relative error = 245092245653870694687.41963847191 % h = 0.0005 x1[1] (analytic) = 0.0012637353884268125587993089414852 x1[1] (numeric) = 5773450524804747.6324641370814927 absolute error = 5773450524804747.6312004016930659 relative error = 456855966658649032773.4103175112 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5265 x2[1] (analytic) = 0.00085044799768952037875221886747711 x2[1] (numeric) = -3477964265445560.6718763872569579 absolute error = 3477964265445560.6727268352546474 relative error = 408956723385136119582.03961223177 % h = 0.0005 x1[1] (analytic) = 0.0012632036536773643218131698955945 x1[1] (numeric) = 8144018458460057.2496789527346866 absolute error = 8144018458460057.2484157490810092 relative error = 644711439422429534338.91657730931 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.527 x2[1] (analytic) = 0.00085093295363943495157910530292247 x2[1] (numeric) = -5422665950536506.384947945965288 absolute error = 5422665950536506.3857988789189274 relative error = 637261246887172230634.42537363941 % h = 0.0005 x1[1] (analytic) = 0.0012626721847288350416871870185942 x1[1] (numeric) = 10954550959757925.31064718870528 absolute error = 10954550959757925.309384516520551 relative error = 867568882267765176701.095977327 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5275 x2[1] (analytic) = 0.00085141852768832881360689603697165 x2[1] (numeric) = -8008567209085095.6579374860166112 absolute error = 8008567209085095.6587889045442995 relative error = 940614627077591671388.75148164739 % h = 0.0005 x1[1] (analytic) = 0.0012621409814483574785209728156648 x1[1] (numeric) = 14146764073110436.394938574383196 absolute error = 14146764073110436.393676433401748 relative error = 1120854506829851631999.6922427507 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE memory used=22.8MB, alloc=4.3MB, time=1.27 t[1] = 0.528 x2[1] (analytic) = 0.00085190472038817647117036353980059 x2[1] (numeric) = -11306312433891356.482079617493049 absolute error = 11306312433891356.482931522213437 relative error = 1327180395096244385074.1937672672 % h = 0.0005 x1[1] (analytic) = 0.0012616100437031308094284527197097 x1[1] (numeric) = 17313099310742399.937189175909267 absolute error = 17313099310742399.935927565865564 relative error = 1372301956310070534427.57631202 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5285 x2[1] (analytic) = 0.00085239153229153788969981081555131 x2[1] (numeric) = -15264033454585309.11309229419851 absolute error = 15264033454585309.113944685730802 relative error = 1790730301314707544898.1259684695 % h = 0.0005 x1[1] (analytic) = 0.0012610793713604205953376586781657 x1[1] (numeric) = 18004946230276114.220297882065746 absolute error = 18004946230276114.219036802694386 relative error = 1427740920926557753671.6309194429 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.529 x2[1] (analytic) = 0.00085287896395155906287288949160932 x2[1] (numeric) = -19113596354839399.574120570278964 absolute error = 19113596354839399.574973449242916 relative error = 2241067861057597130338.442742282 % h = 0.0005 x1[1] (analytic) = 0.001260548964287558747807118693686 x1[1] (numeric) = 2042666771743193.788191180270508 absolute error = 2042666771743193.7869306313062204 relative error = 162045809374622347999.41152674923 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5295 x2[1] (analytic) = 0.00085336701592197258234415237438934 x2[1] (numeric) = -17987895330910443.749807441534256 absolute error = 17987895330910443.750660808550178 relative error = 2107873282573082580978.2801471705 % h = 0.0005 x1[1] (analytic) = 0.0012600188223519434958588340227923 x1[1] (numeric) = -108901538913097309.64439232558523 absolute error = 108901538913097309.64565234440758 relative error = 8642850168684175467034.7395786238 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.53 x2[1] (analytic) = 0.00085385568875709820805291434710783 x2[1] (numeric) = 15344082959924377.581050451541882 absolute error = 15344082959924377.580196595853125 relative error = 1797034693562767496273.1761538882 % h = 0.0005 x1[1] (analytic) = 0.0012594889454210393528278357407412 x1[1] (numeric) = -718905094756948492.63409768210465 absolute error = 718905094756948492.63535717105007 relative error = 57079111124442856666528.484007099 % h = 0.0005 TOP MAIN SOLVE Loop Complex estimate of poles used NO POLE Radius of convergence = 3.405e-05 Order of pole = 0.8958 t[1] = 0.5305 x2[1] (analytic) = 0.00085434498301184343910999606125632 x2[1] (numeric) = 222084264026351986.4448387340419 absolute error = 222084264026351986.44398438905889 relative error = 25994682293730204075499.267589827 % h = 0.0005 x1[1] (analytic) = 0.0012589593333623770832283123849924 x1[1] (numeric) = -3765520673759440461.8216602301546 absolute error = 3765520673759440461.822919189488 relative error = 299097879810195448860381.05906417 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE Complex estimate of poles used Radius of convergence = 3.494e-05 Order of pole = 7.26 t[1] = 0.531 x2[1] (analytic) = 0.00085483489924170408526392545030159 x2[1] (numeric) = 1285339260339291775.6822076965355 absolute error = 1285339260339291775.6813528616363 relative error = 150361112008818772536773.92109143 % h = 0.0005 x1[1] (analytic) = 0.0012584299860435536696363003938124 x1[1] (numeric) = -18071379967188571349.42098905618 absolute error = 18071379967188571349.422247486166 relative error = 1436025855042135764287592.0547221 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5315 x2[1] (analytic) = 0.00085532543800276483894717267152565 x2[1] (numeric) = 6351655586891070163.5136894639149 absolute error = 6351655586891070163.5128341384769 relative error = 742601038702012559665353.02454215 % h = 0.0005 x1[1] (analytic) = 0.0012579009033322322795889290606847 x1[1] (numeric) = -83502646910879873177.811270178195 absolute error = 83502646910879873177.812528079098 relative error = 6638253195436767506774580.0956509 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.532 x2[1] (analytic) = 0.00085581659985169984790299465988337 x2[1] (numeric) = 29742630237525221173.664039171158 absolute error = 29742630237525221173.663183354558 relative error = 3475350938820206560826028.9283272 % h = 0.0005 x1[1] (analytic) = 0.001257372085096142232500211729337 x1[1] (numeric) = -385256236150103136964.09718339762 absolute error = 385256236150103136964.09844076971 relative error = 30639795547922105610514301.153646 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5325 x2[1] (analytic) = 0.00085630838534577328839346605629603 x2[1] (numeric) = 137808832960151368013.39321742939 absolute error = 137808832960151368013.392361121 relative error = 16093364880983246596523444.58971 % h = 0.0005 x1[1] (analytic) = 0.0012568435312030789665933749583355 x1[1] (numeric) = -1795421850745076614064.9587631391 absolute error = 1795421850745076614064.9600199826 relative error = 142851660224280928309127053.18287 % h = 0.0005 TOP MAIN SOLVE Loop Real estimate of pole used NO POLE Radius of convergence = 2.571e-05 Order of pole = 2.427 t[1] = 0.533 x2[1] (analytic) = 0.0008568007950428399389892738519192 x2[1] (numeric) = 640363503434935418571.29485019612 absolute error = 640363503434935418571.29399339532 relative error = 74738901637330684165460903.001863 % h = 0.0005 x1[1] (analytic) = 0.0012563152415209040058497173883259 x1[1] (numeric) = -8246620078116664779998.04418466 absolute error = 8246620078116664779998.0454409752 relative error = 656413279531119030019866121.8684 % h = 0.0005 TOP MAIN SOLVE Loop memory used=26.7MB, alloc=4.3MB, time=1.49 Real estimate of pole used Real estimate of pole used Radius of convergence = 2.429e-05 Order of pole = 4.517 t[1] = 0.5335 x2[1] (analytic) = 0.0008572938295013457549418536696203 x2[1] (numeric) = 2929263808068270633725.6520374488 absolute error = 2929263808068270633725.651180155 relative error = 341687261387628167982730442.4305 % h = 0.0005 x1[1] (analytic) = 0.0012557872159175449269739900491366 x1[1] (numeric) = -35762673403417546591916.963266106 absolute error = 35762673403417546591916.964521893 relative error = 2847829070889803207868863386.2084 % h = 0.0005 TOP MAIN SOLVE Loop Real estimate of pole used Real estimate of pole used Radius of convergence = 1.892e-05 Order of pole = 1.236 t[1] = 0.534 x2[1] (analytic) = 0.00085778748928032844313844618417794 x2[1] (numeric) = 12723863803503612966944.951632938 absolute error = 12723863803503612966944.950775151 relative error = 1483335203941800844242717190.5161 % h = 0.0005 x1[1] (analytic) = 0.0012552594542609953263762898480893 x1[1] (numeric) = -141117242592842936818788.89456958 absolute error = 141117242592842936818788.89582484 relative error = 11242077652856430074514325141.094 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE Real estimate of pole used Radius of convergence = 1.866e-05 Order of pole = 5.517 t[1] = 0.5345 x2[1] (analytic) = 0.00085828177493941803764065276357102 x2[1] (numeric) = 50779986657453412314765.535427761 absolute error = 50779986657453412314765.534569479 relative error = 5916470341111195813265341939.6841 % h = 0.0005 x1[1] (analytic) = 0.0012547319564193147871704579849903 x1[1] (numeric) = -495641417760753719092253.69124579 absolute error = 495641417760753719092253.69250052 relative error = 39501776871546971859763274487.862 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.535 x2[1] (analytic) = 0.00085877668703883747580706999516187 x2[1] (numeric) = 182383357543139051085790.50228507 absolute error = 182383357543139051085790.50142629 relative error = 21237576694357902658704953336.843 % h = 0.0005 x1[1] (analytic) = 0.0012542047222606288461889750434006 x1[1] (numeric) = -1535719195009533818024684.5854046 absolute error = 1535719195009533818024684.5866588 relative error = 122445655621635039464433727918.77 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5355 x2[1] (analytic) = 0.00085927222613940317500058334259466 x2[1] (numeric) = 584245456741016598193136.96504788 absolute error = 584245456741016598193136.96418861 relative error = 67993057260323007064385442457.088 % h = 0.0005 x1[1] (analytic) = 0.0012536777516531289610143445119101 x1[1] (numeric) = -4198711795327422341311473.4711808 absolute error = 4198711795327422341311473.4724345 relative error = 334911566372690449664417273467.94 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.536 x2[1] (analytic) = 0.00085976839280252560988090076182799 x2[1] (numeric) = 1668425598384868693675922.6702196 absolute error = 1668425598384868693675922.6693598 relative error = 194055237707264506388118823155.96 % h = 0.0005 x1[1] (analytic) = 0.0012531510444650724770269564932605 x1[1] (numeric) = -10192002055401215155408126.657669 absolute error = 10192002055401215155408126.658922 relative error = 813309943794671127760374112640.25 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5365 x2[1] (analytic) = 0.00086026518759020989028290768790106 x2[1] (numeric) = 4268486192558119422841828.4549432 absolute error = 4268486192558119422841828.4540829 relative error = 496182602078212497922821794812.39 % h = 0.0005 x1[1] (analytic) = 0.0012526246005647825944694233632835 x1[1] (numeric) = -22167475421752186535981459.684403 absolute error = 22167475421752186535981459.685656 relative error = 1769682266479305062146659587218.1 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.537 x2[1] (analytic) = 0.00086076261106505633968142538779503 x2[1] (numeric) = 9860486575201215305245918.1652836 absolute error = 9860486575201215305245918.1644228 relative error = 1145552379767104086940409493799.1 % h = 0.0005 x1[1] (analytic) = 0.0012520984198206483355273791457368 x1[1] (numeric) = -43616353299197776755066837.27431 absolute error = 43616353299197776755066837.275562 relative error = 3483460453966982967720870999439.9 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5375 x2[1] (analytic) = 0.00086126066379026107424295525909657 x2[1] (numeric) = 20746770079766820496572179.259105 absolute error = 20746770079766820496572179.258244 relative error = 2408883971138752467205705142867.6 % h = 0.0005 x1[1] (analytic) = 0.0012515725021011245114267343732391 x1[1] (numeric) = -78373412687484705812691783.212034 absolute error = 78373412687484705812691783.213286 relative error = 6261995414241874542596428532082.4 % h = 0.0005 TOP MAIN SOLVE Loop Real estimate of pole used NO POLE Radius of convergence = 1.075e-05 Order of pole = 5.3 t[1] = 0.538 x2[1] (analytic) = 0.0008617593463296165824649922390997 x2[1] (numeric) = 40109271495240072886557707.694415 absolute error = 40109271495240072886557707.693553 relative error = 4654347140657360843460562778174.5 % h = 0.0005 x1[1] (analytic) = 0.0012510468472747316895473782086164 x1[1] (numeric) = -130067846758286330612327713.40792 absolute error = 130067846758286330612327713.40917 relative error = 10396720717663360541379379539772 % h = 0.0005 TOP MAIN SOLVE Loop memory used=30.5MB, alloc=4.4MB, time=1.72 NO POLE Real estimate of pole used Radius of convergence = 2.379e-05 Order of pole = 55.5 t[1] = 0.5385 x2[1] (analytic) = 0.00086225865924751230540349107449532 x2[1] (numeric) = 71929005099412812142317827.907436 absolute error = 71929005099412812142317827.906574 relative error = 8341928994042785411336794486985.9 % h = 0.0005 x1[1] (analytic) = 0.0012505214552100561605533196050853 x1[1] (numeric) = -202126520914098477766037860.72774 absolute error = 202126520914098477766037860.72899 relative error = 16163378890620177696408685049607 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.539 x2[1] (analytic) = 0.00086275860310893521748906978789598 x2[1] (numeric) = 120907492932658273039663591.83428 absolute error = 120907492932658273039663591.83342 relative error = 14014058219410421600780489479826 % h = 0.0005 x1[1] (analytic) = 0.0012499963257757499055392592878095 x1[1] (numeric) = -297555576985738024336133006.19522 absolute error = 297555576985738024336133006.19647 relative error = 23804516129363381364222717535831 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5395 x2[1] (analytic) = 0.00086325917847947040793253526412643 x2[1] (numeric) = 192308673450003218871655425.54034 absolute error = 192308673450003218871655425.53948 relative error = 22277049378001673483930047710717 % h = 0.0005 x1[1] (analytic) = 0.00124947145884053056319358434347 x1[1] (numeric) = -415629000878842632890159052.17812 absolute error = 415629000878842632890159052.17937 relative error = 33264385347748000129495445976399 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.54 x2[1] (analytic) = 0.0008637603859253016627203164664802 x2[1] (numeric) = 290865692974287213597128303.72334 absolute error = 290865692974287213597128303.72248 relative error = 33674349705526017595914875299130 % h = 0.0005 x1[1] (analytic) = 0.0012489468542731813969777772086 x1[1] (numeric) = -536102802344475537820118662.54725 absolute error = 536102802344475537820118662.5485 relative error = 42924388696783897990752560341220 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5405 x2[1] (analytic) = 0.00086426222601321204720039138099847 x2[1] (numeric) = 415187277955386869767468266.15947 absolute error = 415187277955386869767468266.15861 relative error = 48039502995591973026582006752710 % h = 0.0005 x1[1] (analytic) = 0.0012484225119425512623222308515348 x1[1] (numeric) = -538074289419639065437490538.82957 absolute error = 538074289419639065437490538.83082 relative error = 43100335365019408112017392440708 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.541 x2[1] (analytic) = 0.00086476469931058448925929437526969 x2[1] (numeric) = 529141281251122906684572608.06398 absolute error = 529141281251122906684572608.06312 relative error = 61189047341198095843790295326581 % h = 0.0005 x1[1] (analytic) = 0.0012478984317175545738384619469313 x1[1] (numeric) = 204711289248724974096275110.08614 absolute error = 204711289248724974096275110.08489 relative error = 16404483253253954463701608649431 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5415 x2[1] (analytic) = 0.00086526780638540236309079124728038 x2[1] (numeric) = 419260389777346543480887562.97793 absolute error = 419260389777346543480887562.97706 relative error = 48454407604597981720254004660189 % h = 0.0005 x1[1] (analytic) = 0.0012473746134671712725477138459096 x1[1] (numeric) = 4750968485575437052379217715.5397 absolute error = 4750968485575437052379217715.5385 relative error = 3.8087743924575824861746350362290e+32 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.542 x2[1] (analytic) = 0.00086577154780625007355680982946525 x2[1] (numeric) = -985949291504139513066319861.76797 absolute error = 985949291504139513066319861.76884 relative error = 1.1388099943944841505845153696078e+32 % h = 0.0005 x1[1] (analytic) = 0.001246851057060446793125941148968 x1[1] (numeric) = 27277593319232498764647040083.267 absolute error = 27277593319232498764647040083.266 relative error = 2.1877186665375777107038593297225e+33 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5425 x2[1] (analytic) = 0.00086627592414231364114121460331367 x2[1] (numeric) = -8705373054671661504687875118.8928 absolute error = 8705373054671661504687875118.8937 relative error = 1.0049191963046550519046504639269e+33 % h = 0.0005 x1[1] (analytic) = 0.001246327762366492031165167692916 x1[1] (numeric) = 130532858148116032968558032915.75 absolute error = 130532858148116032968558032915.75 relative error = 1.0473397294806618171988014479698e+34 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.543 x2[1] (analytic) = 0.00086678093596338128749701437068642 x2[1] (numeric) = -45151246610410039488571296780.181 absolute error = 45151246610410039488571296780.182 relative error = 5.2090724123075931078514805393601e+33 % h = 0.0005 x1[1] (analytic) = 0.0012458047292544833104512097671668 x1[1] (numeric) = 584623185719748405509133831935.52 absolute error = 584623185719748405509133831935.52 relative error = 4.6927353219280172079807323532392e+34 % h = 0.0005 TOP MAIN SOLVE Loop memory used=34.3MB, alloc=4.4MB, time=1.95 NO POLE NO POLE t[1] = 0.5435 x2[1] (analytic) = 0.00086728658383984402158759261938419 x2[1] (numeric) = -207518090832129601586848865412.37 absolute error = 207518090832129601586848865412.37 relative error = 2.3927280174606110505448249705755e+34 % h = 0.0005 x1[1] (analytic) = 0.0012452819575936623502577563788178 x1[1] (numeric) = 2545395928331854489330323895330.1 absolute error = 2545395928331854489330323895330.1 relative error = 2.0440318056566764851814004107771e+35 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.544 x2[1] (analytic) = 0.00086779286834269622642255081248739 x2[1] (numeric) = -912990149949592070479114926650.21 absolute error = 912990149949592070479114926650.21 relative error = 1.0520830295519865765576263264702e+35 % h = 0.0005 x1[1] (analytic) = 0.00124475944725333623265679839004 x1[1] (numeric) = 10961655244938662791203701285890 absolute error = 10961655244938662791203701285890 relative error = 8.8062438643277251196936442279076e+35 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5445 x2[1] (analytic) = 0.00086829979004353624638875542355646 x2[1] (numeric) = -3945118565748965115872734800241.6 absolute error = 3945118565748965115872734800241.6 relative error = 4.5434982375743270157128828445586e+35 % h = 0.0005 x1[1] (analytic) = 0.0012442371981028773698453983553836 x1[1] (numeric) = 46619953460160700019367928449448 absolute error = 46619953460160700019367928449448 relative error = 3.7468702536175114779783834926941e+36 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.545 x2[1] (analytic) = 0.00086880734951456697517718013294248 x2[1] (numeric) = -16783756667081145726045549389798 absolute error = 16783756667081145726045549389798 relative error = 1.9318156869251643703391909238176e+36 % h = 0.0005 x1[1] (analytic) = 0.0012437152100117234714887928906918 x1[1] (numeric) = 1.9221053940026504163281784232491e+32 absolute error = 1.9221053940026504163281784232491e+32 relative error = 1.5454546012865214725264734071068e+37 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5455 x2[1] (analytic) = 0.00086931554732859644430613519421227 x2[1] (numeric) = -69306410025358255599689310210776 absolute error = 69306410025358255599689310210776 relative error = 7.9725262292083242690627686030830e+36 % h = 0.0005 x1[1] (analytic) = 0.0012431934828493775120798194093974 x1[1] (numeric) = 7.4908479576498000050282007092093e+32 absolute error = 7.4908479576498000050282007092093e+32 relative error = 6.0254884384375220092429845679213e+37 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.546 x2[1] (analytic) = 0.00086982438405903841224147657403825 x2[1] (numeric) = -2.7188658327054042462173549028549e+32 absolute error = 2.7188658327054042462173549028549e+32 relative error = 3.1257640996655068441168175409119e+37 % h = 0.0005 x1[1] (analytic) = 0.0012426720164854076983146590660609 x1[1] (numeric) = 2.7004216694331248949338790337014e+33 absolute error = 2.7004216694331248949338790337014e+33 relative error = 2.1730767520384048870911580973362e+38 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5465 x2[1] (analytic) = 0.00087033386027991295411438806384394 x2[1] (numeric) = -9.9371235913063686281182502530752e+32 absolute error = 9.9371235913063686281182502530752e+32 relative error = 1.1417599664696987173493939370637e+38 % h = 0.0005 x1[1] (analytic) = 0.0012421508107894474364848877510829 x1[1] (numeric) = 8.8807163496302727770740507216938e+33 absolute error = 8.8807163496302727770740507216938e+33 relative error = 7.1494670956952033112182383141392e+38 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.547 x2[1] (analytic) = 0.00087084397656584705203733015703041 x2[1] (numeric) = -3.3394526341078264781359786607001e+33 absolute error = 3.3394526341078264781359786607001e+33 relative error = 3.8347312767516406289416826073554e+38 % h = 0.0005 x1[1] (analytic) = 0.0012416298656311952998858269846059 x1[1] (numeric) = 2.6470686020963982056373154837874e+34 absolute error = 2.6470686020963982056373154837874e+34 relative error = 2.1319305175948982857691308171267e+39 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5475 x2[1] (analytic) = 0.00087135473349207518601875008173811 x2[1] (numeric) = -1.0251283111682724443985606430305e+34 absolute error = 1.0251283111682724443985606430305e+34 relative error = 1.1764764357908842430194100899068e+39 % h = 0.0005 x1[1] (analytic) = 0.0012411091808804149962411865616909 x1[1] (numeric) = 7.1449126130885238003843349547687e+34 absolute error = 7.1449126130885238003843349547687e+34 relative error = 5.7568767705191602563980182995254e+39 % h = 0.0005 TOP MAIN SOLVE Loop Complex estimate of poles used NO POLE Radius of convergence = 2.986e-05 Order of pole = 13.6 t[1] = 0.548 x2[1] (analytic) = 0.0008718661316344399254771479758239 x2[1] (numeric) = -2.8705751586349402910833012132160e+34 absolute error = 2.8705751586349402910833012132160e+34 relative error = 3.2924494420417839495557080776440e+39 % h = 0.0005 x1[1] (analytic) = 0.0012405887564069353351439908049313 x1[1] (numeric) = 1.7514604516937132731553704125369e+35 absolute error = 1.7514604516937132731553704125369e+35 relative error = 1.4117977796013515300293051846156e+40 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE memory used=38.1MB, alloc=4.4MB, time=2.17 t[1] = 0.5485 x2[1] (analytic) = 0.00087237817156939252135509478805287 x2[1] (numeric) = -7.3485407107571281218361097772725e+34 absolute error = 7.3485407107571281218361097772725e+34 relative error = 8.4235724256342138340678323475737e+39 % h = 0.0005 x1[1] (analytic) = 0.0012400685920806501955137802847337 x1[1] (numeric) = 3.9195023143625767086919112068635e+35 absolute error = 3.9195023143625767086919112068635e+35 relative error = 3.1607141245197060007356673974240e+40 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.549 x2[1] (analytic) = 0.00087289085387399349883379808742284 x2[1] (numeric) = -1.7274041392085438298117672105502e+35 absolute error = 1.7274041392085438298117672105502e+35 relative error = 1.9789463156156564919607261785595e+40 % h = 0.0005 x1[1] (analytic) = 0.0012395486877715184930700808715671 x1[1] (numeric) = 8.0589824057327805400642895321993e+35 absolute error = 8.0589824057327805400642895321993e+35 relative error = 6.5015456716116208680040213149204e+40 % h = 0.0005 TOP MAIN SOLVE Loop NO POLE NO POLE t[1] = 0.5495 x2[1] (analytic) = 0.00087340417912591325064881256105309 x2[1] (numeric) = -3.7497619106324116753806784082608e+35 absolute error = 3.7497619106324116753806784082608e+35 relative error = 4.2932722332346795567299580548735e+40 % h = 0.0005 x1[1] (analytic) = 0.001239029043349564147822131988547 x1[1] (numeric) = 1.5334208008869407782062369054791e+36 absolute error = 1.5334208008869407782062369054791e+36 relative error = 1.2375987545388963285424098868184e+41 % h = 0.0005 TOP MAIN SOLVE Loop Real estimate of pole used NO POLE Radius of convergence = 0.0001338 Order of pole = 326.5 t[1] = 0.55 x2[1] (analytic) = 0.00087391814790343263100749258018221 x2[1] (numeric) = -7.5645094059719809573560874690152e+35 absolute error = 7.5645094059719809573560874690152e+35 relative error = 8.6558557275868061860501280818240e+40 % h = 0.0005 x1[1] (analytic) = 0.0012385096586848760515748659367868 x1[1] (numeric) = 2.7212753786517590928930158332142e+36 absolute error = 2.7212753786517590928930158332142e+36 relative error = 2.1972177282342494988679742744605e+41 % h = 0.0005 Finished! Maximum Iterations Reached before Solution Completed! diff (x2,t,2) = 3.0 * diff(x2,t,1) - 2.0 * x2 - diff(x1,t,2) - diff (x1,t,1) + x1; diff (x1,t,1) = 4.0 * x2 - 2.0 * diff (x2,t ,1) - 2.0 * x1; Iterations = 100 Total Elapsed Time = 2 Seconds Elapsed Time(since restart) = 2 Seconds Expected Time Remaining = 3 Minutes 14 Seconds Optimized Time Remaining = 3 Minutes 13 Seconds Time to Timeout = 14 Minutes 57 Seconds Percent Done = 1.122 % > quit memory used=39.5MB, alloc=4.4MB, time=2.24